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In this ITEMS module we frame the topic of scale reliability within a confirmatory 
factor analysis and structural equation modeling (SEM) context to address some of the 
limitations of Cronbach’s α. This modeling approach has two major advantages: (1) it 
allows researchers to make explicit the relation between their items and the latent 
variables representing the constructs those items intend to measure, and (2) it 
facilitates a more principled and formal practice of scale reliability evaluation. 
Specifically, we begin the module by discussing key conceptual and statistical 
foundations of the classical test theory model and then framing it within an SEM 
context; we do so first with a single item and then expand this approach to a multi-
item scale. This allows us to set the stage for presenting different measurement 
structures that might underlie a scale and, more importantly, for assessing and 
comparing those structures formally within the SEM context. We then make explicit the 
connection between measurement model parameters and different measures of 
reliability, emphasizing the challenges and benefits of key measures while ultimately 
endorsing the more flexible McDonald’s ω over Cronbach’s α. We then demonstrate 
how to estimate key measures in both a commercial software program (Mplus) and 
three packages within an open-source environment (R). In closing, we make 
recommendations for practitioners about best practices in reliability estimation based 
on the ideas presented in the module. 
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 Prerequisite Knowledge 
 

This ITEMS module assumes that learners have had some exposure to basic principles of 
classical test theory (CTT) and reliability even though we provide a brief treatment of such 
concepts specifically within the SEM framework. Specifically, we assume that learners are 
familiar with: 

- true scores and error scores; 
- definitions of reliability in CTT; 
- Cronbach’s α. 

Specific prior computational experience with specifying structural models in Mplus or R, while 
helpful in working through examples, is not critical as we provide instructional scaffolds 
throughout.  
 
 

Learning Objectives 
 

Upon completion of this ITEMS module, learners should be able to: 
 

A. Conceptual Understanding 
 

- Express a unidimensional scale graphically as a structural model 
- Express parallel, tau-equivalent, and congeneric models within an SEM framework 
- Express the assumptions of Cronbach’s α in terms of a structural model 
- Determine, for any given unidimensional scale, which parameters would exist for the 

parallel model, tau-equivalent model, and congeneric model 
 
B. Working with Software 

 
- Fit a unidimensional congeneric model  
- Compute the necessary summary statistics to obtain the traditional estimate of 

Cronbach’s α 
- Compute an estimate of Cronbach’s α using parameter estimates from output   
- Compute an estimate of McDonald’s ω using parameter estimates from output   
- Compute a 95% confidence interval for McDonald’s ω using the asymptotic standard 

error (software permitting) 
- Compute a 95% bootstrap confidence interval for McDonald’s ω (software permitting) 
- Conduct absolute model-data fit evaluations using suitable indices (e.g., χ2, AIC, BIC, 

SRMR, RMSEA, CFI) for parallel, tau-equivalent, and congeneric models 
- Conduct relative model-data fit comparisons among the parallel, tau-equivalent, and 

congeneric models using information criteria as well as χ2 difference tests 
 
After completion of this module, learners might take additional ITEMS modules on CTT, 
generalizability theory, validity, item response theory, and bi-factor models. Check the NCME 
webpage for up-to-date information on ITEMS modules. 
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ll too often the areas of measurement, 
statistics, assessment, and evaluation 

are treated as separate entities, collectively 
contributing to a well-rounded quantitative 
education but also serving to define spec-
ializations within the broader quantitative 
domain. Although such divisions, and their 
own subdivisions, have existed and con-
tinue to persist largely for historical rea-
sons, they have also become increasingly 
artificial, unnecessary, and even to some 
extent detrimental. 

Generally speaking, all of these areas 
utilize models that serve as explanatory 
place-holders for processes, and sometimes 
for variables within those processes, that 
are otherwise difficult, if not impossible, to 
observe directly. Whether these models rep-
resent the unobserved (i.e., latent) variables 
hypothesized to underlie response patterns 
to specific psychological or achievement in-
struments, individual differences in change 
in key outcomes over time, or the complex 
interplay of the characteristics of test items, 
test takers, and testing contexts, all none-
theless distill down to the same core 
elements: variables and links.  

The former may include measured var-
iables for which we have direct obser-
vations/data as well as latent variables for 
which we have strong theory but no direct 
observations, while the latter constitute the 
hypothesized connections within and be-
tween both types of variables, such as linear 
or logistic, and occasionally links between 
the variables and other links, as in cases of 
moderation. In short, models are models, 
no matter what their historical origin or 
typical application. 

The existence of the aforementioned 
historical divisions has meant that different 
areas have advanced more than others in 
some respects, less than others in other 
respects, with their respective evolutions 
guided by the goals and needs of each 
specific area. On the positive side, this 
reflects the fact that areas are growing and 
adapting to meet their specific needs. On 
the negative side, however, it also means 
that wheels are often reinvented under 
different names, when ways of thinking and 
doing that are much needed in one area 
might have existed right “next door” for 
quite some time.  

The topic of scale reliability is one born 
out of classical test theory (CTT), and which 

has evolved primarily within the measure-
ment/psychometric domain (see, e.g., Allen 
& Yen, 1979; Crocker & Algina, 1986). As 
this ITEMS module will show, it is also a 
topic that can benefit from being framed 
within a latent variable context, one most 
typically associated with confirmatory fac-
tor analysis (CFA) and structural equation 
modeling (SEM) (see, e.g., Kline, 2016). The 
benefits of such a framing will be primarily 
two-fold, the first pedagogical and the 
second methodological.  

Framing scale reliability within an SEM 
context will first serve to clarify the roles of 
measured scale items and the latent 
constructs they intend to measure, make 
explicit the links between the items and 
their constructs, and, in turn, formalize 
what we mean by scale reliability and the 
typical indices thereof. Second, it will allow 
us to conduct scale reliability analysis in a 
more principled and formal way, assessing 
and possibly remediating the models that 
underlie reliability measures and accommo-
dating real-world data challenges along the 
way.  

This ITEMS module is structured as 
follows. Specifically, we begin the module 
by discussing key conceptual and statistical 
foundations of the CTT model and then 
framing it within an SEM context; we do so 
first with a single item and then expand this 
approach to a multi-item scale. This allows 
us to set the stage for presenting different 
measurement structures that might under-
lie a scale and, more importantly, for 
assessing and comparing those structures 
formally within the SEM context. We then 
make explicit the connection between meas- 
urement model parameters and different 
measures of reliability, emphasizing the 
challenges and benefits of key measures 
while ultimately endorsing the flexible 
McDonald’s ω over Cronbach’s α. We then 
demonstrate how to estimate key measures 
in both a commercial software program 
(Mplus) and three packages within an open-
source environment (R). In closing, we make 
recommendations for practitioners about 
best practices in reliability estimation based 
on the ideas presented in the module. 
 
Conceptual Foundations  

Whether for evaluating attitudes, beliefs, 
or achievement, scales are typically com- 
posed of items whose purpose is to provide 

A 
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insight into the underlying construct(s) they 
are designed to measure. For the goals of 
the current ITEMS module, we will primarily 
consider scales or subscales designed to be 
unidimensional, that is, whose items are 
intended to reflect a single latent construct.  

As an example, Midgley et al. (1998) cre- 
ated an instrument with 18 scale items that 
are intended to tap three constructs for 
school-age children for assessing achieve-
ment goal orientations, with subsets of 6 
items dedicated to each of the constructs 
“Ability-Approach Goal Orientation,” 
“Ability-Avoid Goal Orientation,” and “Task 
Goal Orientation.” For the purposes of this 
ITEMS module, imagine that we have data 
on the “Task Goal Orientation” subscale for 
which the items are:  

X1:  I like school work that I’ll learn from, 
even if I make a lot of mistakes.  

X2: An important reason why I do my 
school work is because I like to learn new 
things.  

X3:  I like school work best when it really 
makes me think.  

X4: An important reason why I do my 
work in school is because I want to get 
better at it.  

X5: I do my school work because I’m 
interested in it.  

X6:  An important reason I do my school 
work is because I enjoy it. 

Subjects rate themselves on a 7-point rating 
scale for each item, which ranges from 1 = 
‘not true of me at all’ to 7 = ‘very true of 
me.’ The practitioner’s ultimate goal for 
these six items is typically to get a total 
scale score, which can in turn be used as a 
measured proxy for students’ latent “Task 
Goal Orientation” with a degree of reliability 
that can be assessed.  

Before addressing the reliability of the 
scale as a whole, however, let us start by 
considering each scale item individually. As 
per CTT, we may view each ith individual’s 
observed Xi score on a scale item as being 
composed of that individual’s true score Ti 
and error Ei, where Ti is the long-run  

 

expected value of Xi for that individual upon 
theoretically infinite re-administrations of 
item X, and Ei is, quite simply, the 
remainder (see, e.g., Traub & Rowley, 1991):  

Xi = Ti + Ei  .          (1) 

If one is willing to believe that T is not only 
the long-run expected value of X, but, in 
fact, represents a theoretical score on an 
underlying construct of interest, such as 
true “Task Goal Orientation,” and that E is a 
constellation of other agents that also 
contribute to one’s observed score on a 
given variable/item X, then Equation 1 may 
be represented graphically as in Figure 1.  

In Figure 1 X is depicted inside a box, 
indicating that it is a measured variable, 
while T is depicted inside a circle indicating 
that it is not directly observed (i.e., latent); 
we note that E could also be contained 
within a circle due to its unobserved nature, 
but doing so is less customary. Addi- 
tionally, arrows are used to reflect a belief 
that both T and E contribute to, and indeed 
influence, scores observed on a given X; this 
link is typically approximated as a linear 
relation and we will assume so here. 

Furthermore, the paths from T and E into 
X are set to 1, indicating that X receives 
input from each in the same metric as X. 
This does not imply that they inform X 
equally, however. Indeed, T and E each have 
their own variance contributing to that of X, 
as indicated by the attached and labeled 
two-headed arrows; these variances in turn 
serve the traditional definition of reliability: 

22

2
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Finally, note that T and E are not directly 
connected. While in CTT this separation 
reflects the necessity that the error, as a 
remainder, must be uncorrelated with T 
(i.e., Ei = Xi − Ti), within the modeling world 
this reflects an explicit or implicit – and 
occasionally questionable – assumption that 
the residual influences on X are unrelated 
to the construct whose score is represented 
by T.  
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Figure 1 Latent variable representation of 
the core CTT equation. 

 
After having focused above on a single 

observed scale item, now let us consider 
that each such item has its own true score 
and error score components, and that the 
observed scores across all scale items cor- 
relate because their true scores correlate. 
Further, and critically, the true scores 
themselves correlate because they are all 
believed to be influenced by a single 
common construct, ξ, such as “Task Goal 
Orientation.” 

This latent factor ξ is not the only 
influence on the true scores, however; each 
T  has  influences  specific to that particular                
true score and unrelated to ξ, which we  
may designate as S (for specific factor). T1, 
for example, the true score for item X1, 
would be influenced by the factor common 
to all item true scores, ξ , and possibly also 
by a factor S1 representing students’ 
attitude about making mistakes, which is 
independent of their “Task Goal 
Orientation.” Thus, the true score variance 
shown in Figure 1 is explained by the 
common factor ξ and the  specific factor  S1.  
Such a model across all scale items is 
depicted in Figure 2. 

It is worth stating that the model in 
Figure 2 is entirely reasonable from a 
theoretical point of view; analytically, how- 
ever, it is generally intractable, suffering 
from identification issues without further 
assumptions and their associated con- 
straints. Fortunately, we may make a highly 
useful simplification by decomposing each 
item’s true score into its constituent parts ξ  
assumptions and their associated con- 
straints. Fortunately, we may make a highly  
useful simplification by decomposing each 
item’s true score into its constituent parts ξ  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 Full latent variable representation 
of a six-item scale. 

 
and  S,  meaning  that  each measured X var- 
iable is, at its core, influenced by the com- 
mon factor ξ and two independent sources 
of error, S and E.  

If ξ were modeled as a direct influence 
on the X variables, and the error sources 
were collapsed into a single combined error 
term δ (representing that which is not 
explained by the common factor), the res- 
ulting model would be a fairly familiar one-
factor model depicted in Figure 3.  
 

 
 
 
 
 

 
 
 

 
 
 

 
Figure 3 Common factor model 

representation of a six-item scale. 
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Relative to Figure 2, the true score variance 
in each original item in Figure 3 has been 
bifurcated into that which is relevant to the 
scale as a whole (and thus explainable by 
the common factor ξ) and that which is 
specific to the item’s true score (i.e., S); this 
latter component, along with that which is 
unique to the item’s measured score X (i.e., 
E), are both sources of error (δ) from the 
perspective of the scale as a whole. The 
loading paths, reflecting the contribution of 
the common factor to each scale item, are 
designated as λ, the variance of each δ error 
term is θ (a combination of S and E 
variances) and variance of the factor is set 
to 1 to identify the factor’s metric. The 
model-based reliability implied for a given 
scale item X is thus  

 

 
   

                                                    ,             (3) 

 

where Equation 3 refers to an item’s 
reliability vis-à-vis the construct being 
measured by the entire scale, ξ, not the 
reliability that relates to the item’s true 
score. 

Relating the model in Figure 3 back to 
CTT, if all X variables represent tests 
intended to measure the same construct, a 
model of parallel tests would be one in 
which all tests have the same amount        
of true  score  variance  and  error  variance, 

2
Tσ  and 

2
Eσ  in Figure 1, respectively.        In   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

order   for  this   to  happen,  the   common  
factor ξ and specific factor S (see Figure 2) 
would need to combine to yield the same 
true score variance for all items, while the 
item error variances E would likewise need 
to be the same. Transitioning to Figure 3, 
then, the implication for the “Task          
Goal Orientation” scale would be that all  
six items are explained precisely to          
the same degree by the common 

factor 22
6

2
1 ... λλλ ===  as well as by their 

aggregate error components δ resulting in 

equal error variances θθθ === 61 ... .  

The assumption of parallel tests might 
be somewhat reasonable for a series of 
instruments intended to measure, say, a 
relatively narrowly defined skill such as 
“single-digit addition” where each test con-
tains random sets of single-digit addition 
items. The assumption of parallel scale 
items, however, is generally much less 
palatable, given that specific item content is 
typically varied within an instrument, as 
seen in the case of the set of “Task Goal 
Orientation” items. That is, even if a 
common factor does underlie all six scale 
items, it may be hard to believe that the 
amount of variance explained in X3 (“I like 
school work best when it really makes me 
think”) is precisely the same as that 
explained in X6 (“An important reason I do 
my school work is because I enjoy it”). This 
parallel model, with two parameters to 
explain the six items’ 21 unique variances 
and covariances (i.e., 19 df), is depicted in 
Figure 4a. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 Parallel, tau-equivalent, and congeneric models for a six-item scale. 
 

2

2

variance explained by rel( )
total item variance
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λ
λ θ

=

=
+

Figure 4 Parallel, tau-equivalent, and congeneric models for a six-item scale. 
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A less restrictive configuration for a set 
of tests would be that all tests have the 
same amount of true score variance but 
that error variances are free to vary across 
tests; this is referred to as true score 
equivalence or tau-equivalent tests. In the 
case of the “Task Goal Orientation” scale 
items, tau-equivalence would represent 
when the underlying factor explains the 
same amount of variance in each item, 

22
6

2
1 ... λλλ ===  but with the error 

variances allowed to be unique across items 
(θ1,…,θ6).  

That is, whereas in the parallel model 
error variances are assumed the same, 
thereby implying – because loadings are 
assumed to be the same as well – that all 
items have the same observed variance, the 
tau-equivalent model releases the latter 
assumption acknowledging that specific S 
and/or E factors might realistically account 
for different amounts of variance in 
different items on an instrument (see, e.g., 
Reuterberg & Gustafsson, 1992). Indeed, 
one would expect this be the case for the 
“Task Goal Orientation” scale given the 
diversity of items such as “I like school 
work best when it really makes me think” 
and “An important reason why I do my 
work in school is because I want to get 
better at it.”  

The tau-equivalent scenario, however, 
while  a clear improvement  over  the highly  
restrictive  parallel scenario, is only  slightly  
more   palatable  at  best,  still  retaining the  
generally unrealistic idea that the common 
factor ξ explains the same amount of 
variance in all scale items (λ2). This tau-
equivalent model, with seven parameters to 
explain the six items’ 21 unique variances 
and covariances (i.e., 14 df), is depicted in 
Figure 4b.  

Finally, the least restrictive model is one 
in which the amount of true score variance 
is allowed to differ across tests as is the 
amount of error variance; this is referred to 
as congeneric tests. In terms of the set       
of “Task Goal Orientation” scale items,   this 
translates to potentially different loading 
paths λ1,…,λ6, and potentially different error 
variances θ1,…,θ6, and, as such, seems the 
most realistic scenario for a set of scale  
 
 
 

items all sharing a common underlying 
factor but still having unique content. This 
congeneric model, with 12 parameters to 
explain the six items’ 21 unique variances 
and covariances (i.e., 9 df), is represented in 
Figure 4c.  

Having described how to use the SEM 
framework to characterize the parallel, tau-
equivalent, and congeneric models, an 
immediate advantage is that one need not 
assume or argue for one set of model 
conditions or another; instead, we can 
evaluate model-data fit using standard SEM 
software packages such as Mplus, EQS, 
LISREL, AMOS, or lavaan. Results for these 
models can lead to an evaluation of each 
model individually via common absolute fit 
indices (e.g., SRMR), parsimonious fit indices 
(e.g., RMSEA), and incremental fit indices 
(e.g., CFI). Models can also be compared 
relative to one another using information 
indices (e.g., AIC, BIC) and/or using 
likelihood ratio tests with the choice 
depending on the hierarchical relation 
among the models that are to be compared. 
Specifically, likelihood ratio tests are 
indicated for nested models when a more 
restrictive model can be expressed as a 
special case of a more general model 
whereas information indices are suitable for 
nested  and  non-nested  models.  Based  on 
the previous exposition, the parallel model 
is nested within the tau-equivalent model 
and the parallel and tau-equivalent models 
are nested within the congeneric model. 

Now let us consider a simulated data set 
for the six “Task Goal Orientation” items in 
which 300 subjects were simulated to 
respond on the aforementioned 7-point 
rating scale using a congeneric model 
structure. Descriptive statistics for these 
data appear in Table 1; the raw data file is 
available in the online supplementary 
materials or upon request from the first 
author.Next, the parallel, tau-equivalent, 
and congeneric models were fit to the 
simulated data using Mplus using the 
default maximum likelihood estimation 
setting. Syntax for estimating each model 
appears in Appendix A while model-data fit 
information and parameter estimates are  
shown in Table  2.
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      As one would expect given the sim-
ulation setup, only the congeneric model 
meets currently accepted standards of 
model-data fit for absolute, parsimonious, 
and incremental indices (for guidelines see, 
e.g., Mueller & Hancock, 2010). This model 
would also be the model of choice using 
both information and statistical criteria: AIC 
and BIC values are lowest for the congeneric 
model. Finally, using the likelihood ratio 
test one can see that the congeneric model 
fits statistically significantly better than 
either of the other two models as well 

(congeneric vs. parallel 2
diffχ = 497.515, 

df=10, p<.001; congeneric vs. tau-equivalent 
2
diffχ = 155.491, df=5, p<.001). As a result,   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
one should interpret and use only the  
 
 
parameter   estimates  from  the  congeneric 
model for further analyses and reporting. 
 
Reliability Estimation                     n                         
      Having laid the foundations for 
modeling the formal structure governing 
the items of a unidimensional instrument, 
we can now depict the scale itself within the 
model. To start,    given   that   equally-
weighted   item aggregation (e.g., computing 
simple sum scores or averages) is far and 
away the most common method for 
deriving a scale score intended to 
approximate the underlying factor, we will 
graphically represent an instrument that is 
the simple sum of its scale items.  
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We could do so in any of the models 
depicted in Figure 4; for our purposes, we 
will augment the tau-equivalent and 
congeneric models, as seen in Figure 5, with 
an entity representing the simple (unit-
weighted) sum scale score. This score is 
depicted as a round-edged rectangle; this is 
not standard representation per se, but is 
merely meant to reflect that this is neither 
measured (rectangle) nor latent (circle) as 
far as the model is concerned. Indeed, if we 
had computed this scale score and included 
it as a measured variable within this model, 
its perfect multicollinearity with the 
individual items would have prevented the 
model from being estimable. It is therefore 
not literally included, but only graphically 
depicted as such, and without any residual 
variance of its own given that it is perfectly 
determined by its own scale items. 

We may now consider reliability in the 
context of this model. Specifically, we 
consider the reliability of the scale score 
that is perfectly determined by the scale 
items, which themselves are partially 
determined by their common underlying 
factor. Said differently, the  variance  in  the  
scale score has two types of sources, one 
associated  with  the  factor  that  it  will  be 
used to approximate and one associated 
with the item-level error terms. 

For the tau-equivalent model, using 
either  the  linear  algebra  of composites or  
heuristically  equivalent  path  tracing   (see, 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

e.g., Loehlin, 2004), the total variance in the 
scale score for a J-item instrument may be 
shown to be: 

      
 
 
 
 
 

                                                                  (4) 
 
 
As such, the model-based reliability of the 
scale score will be the ratio of the variance 
that is explained by the factor ξ to the 
variance of the scale in total: 

   rel(tau-equivalent scale)  

    =     
 variancescale total

by  explained variance ξ  

   =   

1

22

22

∑
=

+
J

i
iJ

J

θλ

λ
.                                  (5) 

This is, in fact, a model-based estimate of 
Cronbach’s α (Cronbach, 1951; Guttman, 
1945; Miller, 1995), which makes the 
assumption of tau-equivalence. Indeed, such  
an assumption is critical for the derivation of  

Figure 5 Tau-equivalent and congeneric models with scale scores. 

2 2

1

var(tau-equivalent scale) 
= variance explained by 
+ variance explained by error terms

=  .
J

i
i

J

ξ

λ θ
=
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the more familiar closed-form computational 
formula 
 



















−







−
=

∑
=

2
scale

1

2

1
1 σ

σ
α

J

i
X i

J
J  ,                  (6)         

 

where 2
iXσ  is the ith  scale item’s variance 

and 2
scaleσ  is the variance of the total scale 

scores. Using the tau-equivalent model  
parameter estimates from Table 2 within 
Equation 5 results in a model-based 
reliability estimate whose pieces are  
 
 
 
 
 
 
which assemble to yield 

712.0)049.12812.29/(812.29ˆ =+=α     

It is important to note that this diverges 
from the reliability estimate derived from 
the application of Equation 6 to the raw 

data, which yields α̂ = 0.786. The source of 
this divergence is rooted in the fact that the 
parameter estimates from the tau-
equivalent model used in Equation 5 were 
derived by forcing loading equivalence 
while the values used in Equation 6 merely 
assumed such equivalence but without any 
formal constraints within an SEM.  

So which is correct, the one estimating 
that 71.2% of the variance of scale scores is 
attributable to true score variability or the 
one estimating 78.6%? Quite simply, neither, 
as the model of tau-equivalence is incorrect 
and severely so according to the fit indices 
in Table 2. Hence, estimates of reliability 
based on Cronbach’s α are of limited utility 
for these data. This would not have been 
known, however, without assessing model-
data fit for the tau-equivalent model, thus 
further underscoring the value of assessing 
the fit of the model that is formally 
underlying one’s choice of reliability 
coefficient. 

 
 

For the more flexible congeneric model, 
again using either the linear algebra of 
composites or path tracing, the total variance 
in the scale score for a J-item instrument 
with no error covariances may be shown to 
be: 

 
   var(congeneric scale)  
   =  variance explained by ξ + variance  
        explained by error terms 

   =  ∑∑
==

+
J

i
i

J

ji
ji

11.
θλλ  = ∑∑
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+
J

i
i

J

i
i

1

2

1
)( θλ .   (7) 

 
The resulting model-based reliability is thus: 

 
   rel(congeneric scale)   

   =  
 variancescale total

by  explained variance ξ
 

   =  
)(

)(

1

2

1

2

1

∑∑

∑

==

=

+
J

i
i

J

i
i

J

i
i

θλ

λ
.                                (8) 

 
This quantity, referred to by McDonald 

(1999) as ω, makes no assumptions about 
equality of true score or error score 
variances although it still assumes zero 
correlations among errors and of errors with 
ξ. Using the congeneric model parameter 
estimates from Table 2 within Equation 8 
yields a model-based reliability estimate 
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That is, we estimate that 81.4% of the 
variance of scale scores is attributable to 
true score variability, as opposed to lower 
estimates from both the computational and 
model-based α estimates we obtained above.  

Indeed, α is occasionally described as a 
lower-bound estimate of scale reliability; in 
practice, however, α estimates can exceed ω 
estimates under a variety of circumstances 
(see, e.g., Dunn, Baguley, & Brunsden, 2014; 
Widaman, Little, Preacher, & Sawalani, 
2011). More important than relative mag-  
Nitude, however however, is the issue of 
accuracy; McDonald’s ω has a greater 
chance of being an accurate representation 
of scale reliability given its less heavy 
reliance on unrealistic assumptions. 

Whereas in the above example we 
computed the ω estimate manually from the 
necessary congeneric model parameter 
estimates, one may also compute reliability 
directly within the modeling software. This 
may be done in a manner that cleverly 
parallels the models in Figure 5 (see, e.g., 
Miller, 1995; Raykov, 1997), but such 
modeling tricks are now largely 
unnecessary. In Mplus, for example, an 
additional parameter may be created to 
represent ω, which is precisely the function 
in Equation 8.  

At first this may be seen to hold little 
advantage, given the ease of the hand 
computation. However, a by-product of 
estimating the reliability coefficient with 
the modeling software is the ability to 
generate an accompanying confidence 
interval. Although the asymptotic standard 
error for the additional parameter (i.e., ω) is 
typically estimated through what is known 
as the delta method (i.e., a first-order Taylor 
series based approximation) (see, e.g., 
Casella & Berger, 2002), which in turn 
requires the assumption of normality of ω 
estimates to construct a confidence interval, 
a potentially more accurate confidence 
interval may be derived through bootstrap 
resampling (Hancock & Liu, 2012).  

Appendix B presents extended Mplus 
code for the congeneric model such that 
both a point estimate and a bias-corrected 
bootstrap interval estimate for ω are 
contained in the output. The latter is based 
on 5000 bootstrap samples, with inequality 
constraints to keep loadings from going 
negative (see Hancock & Nevitt, 1999). The 
resulting point estimate is the same as 

computed previously, ω̂ =0.814, and the 
associated 95% bias-corrected bootstrap 
confidence interval for ω is (0.777, 0.844). 
The asymmetry of this interval around the 
point estimate underscores the value of the 
bootstrap  interval  relative to one that 
could be constructed based on the 
asymptotic standard error accompanying 

the computation of ω̂ . 
 
Implications for Practitioners         

Because of its less stringent  
aassumptions, McDonald’s ω is widely 
viewed within the measurement community 
as a superior alternative to Cronbach’s α 
because it allows analysts to estimate 
reliability in a manner that is far more likely 
to be consistent with a scale’s underlying 
congeneric measurement structure (see, 
e.g., Dunn et al., 2014; McNeish, in press; 
Sijtsma, 2009). Indeed, even researchers 
outside the measurement community have 
recognized the limitations of α (e.g., 
Crutzen & Peters, 2017).  

Nonetheless, the use of α persists among 
research practitioners, in part due to its 
wide-ranging accessibility. Specifically, 
Cronbach’s α has both a model-based 
formula (Equation 5) and a more common 
closed-form computational formula 
(Equation 6), the latter of which is available 
in common statistical software packages 
such as SPSS, SAS, and Stata. McDonald’s ω, 
on the other hand, requires the use of a 
model-based formula although we have 
recently proposed a closed-form 
computational formula for ω (Hancock & 
An, 2016). Until recently, this has meant 
that, applied researchers have needed to be 
familiar with SEM packages and conduct 
analyses like those presented in the last 
section. Every bit as accurate today is the 
wise observation by Borsboom (2006) over a 
decade ago: “there is little chance of 
convincing [psychologists] to use a model—
any model—that is not “clickable” in the 
menus of major statistical programs” (p. 
433).  

Fortunately, more recently, several R 
packages have been developed to compute 
ω directly from a unidimensional con- 
firmatory factor model, including MBESS 
(Kelley, 2015), semTools (Pornprasertmanit, 
Miller, Schoemann, & Rosseel, 2013), and 
coefficientalpha (Zhang & Yuan, 2015); 
some even offer confidence intervals 
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assuming normality of ω̂  estimates. For the 
simulated dataset, we used each of these 
packages to estimate ω as well as 
Cronbach’s α for reference. The necessary R 
code and output appear in Appendix C, with 
results matching the previous model-based 

point estimates of ω̂ =0.814 and α̂ =0.786 
from Mplus.  

There are, however, limitations of these 
R package that bear making explicit. First, 
and most obvious, is that the applied 
researcher is required to know how to use 
R. Although R’s popularity is continually 
growing, it is by no means ubiquitous, and 
its general lack of graphic interface will 
likely preclude its universal adoption 
among practitioners (although RStudio and 
the Shiny provide potential pathways for 
overcoming these limitations).  

Second, although various model-
assumption diagnostics are available in 
some packages (e.g., coefficientalpha’s 
F-test of tau-equivalence, as seen in 
Appendix C), these packages are far from 
exhaustive in their capabilities. In general, 
full-fledged SEM packages have enhanced 
diagnostic capabilities and added versatility 
for accommodating various real data 
challenges associated with reliability 
estimation. Therefore, estimating reliability 
indices with a full-fledged SEM package 
remains, for now, likely the preferable 
approach for data analysts, even though it 
requires a good deal of front-end 
investment for those unfamiliar with such 
modeling packages.  

Diagnostically, even if one were by-
passing parallel and tau-equivalent models 
in favor of the congeneric model, which 
seems entirely reasonable for most real 
data sets, the congeneric model may still 
not provide satisfactory fit to the data. One 
reason may be local dependence, which can 
be diagnosed with the judicious use of so-
called modification indices (see, e.g., Mueller 
& Hancock, 2010). While not infallible, these 
indices  are  able  to  point  toward relations 
Specifically, the error covariances 
contribute to the total scale variance in the  
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Equation 8: 
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Failure to detect and accommodate such 
error covariances could make the reliability 
estimate in Equation 8 an over-estimate (if 
the error covariances are positive) or an 
under-estimate (if the error covariances are 
negative). One should be also aware that 
such error covariances generally signify 
additional dimensions at work among pairs 
or subsets of items. Whether their existence 
warrants modification of the scale items, 
and/or a complete rethinking of the 
dimensionality of the instrument at hand, 
however, remains up to the researcher.   

Other reasons data-model fit may be 
poor when evaluating a measurement 
model    could    include   failures   to   meet 
assumptions underlying the estimation 
process itself (e.g., maximum likelihood). 
Fortunately, the SEM framework allows 
many such violations to be remediated. 
Nonnormality, for example, can be 
addressed through, say, bootstrapping or 
Satorra-Bentler rescaling corrections to 
parameter test statistics and fit indices (see 
Finney & DiStefano, 2013). Nonrandom 
samples, such as those arising through 
complex/multilevel sampling structures (e.g., 
multistage sampling, sampling weights), can 
be accommodated through design-based 
corrections to standard errors and fit 
statistics (see Stapleton, 2013). The SEM 
framework is also quite adept at handling 
item-level missingness through, for 
example, full information maximum 
likelihood estimation or multiple imputation 
(see, e.g., Enders, 2013). Thus, there are 
many benefits to taking this more 
comprehensive model-based approach to 
scale reliability assessment. 
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Conclusion 
As mentioned at the start of this ITEMS 

module, different areas of quantitative 
methods have evolved at different rates to 
meet different, but often related, goals. 
Reliability assessment, although having 
evolved primarily in a measurement/ 
/psychometric arena, is nicely subsumed by 
the latent variable / SEM framework that 
has developed in a more applied statistical 
domain. As we have demonstrated in this 
ITEMS module, embedding the practice of 
scale reliability assessment within the SEM 
framework has benefits in terms of the 
articulation of the measured and latent 
variables and their links. Through such 
articulation, this approach facilitates a 
formal evaluation of the relevant models 
underlying the reliability assessment, allows 
one to model additional relations and 
address potential data challenges at hand, 
and, ultimately, yields more appropriate 
point and interval estimation of reliability.  

In this ITEMS module we have also been 
rather unveiled in our sentiments toward 
Cronbach’s α. As McNeish (in press) nicely 
put it, “Cronbach’s alpha had a good run 
and was able to hold down the fort for the 
field for over 50 years, but methodological 
reinforcements have indeed arrived.” The 
reinforcement we have emphasized is 
McDonald’s ω, which we believe to be a 
reasonable successor. It is not the only 
contender, however.  

Variations on ω itself exist, for a variety 
of specific scenarios, include omega 
hierarchical (see Kelley & Pornprasertmanit, 
2016; Zinbarg, Revelle, & Yovel, & Li, 2005) 
and what McNeish referred to as Revelle’s 
omega total (Revelle & Zinbarg, 2009). Other 
options also exist, including, but not limited 
to, greatest lower bound reliability (Jackson 
& Agunwamba, 1977; Moltner & Revelle, 
2015), maximal reliability (e.g., Bentler, 
2007; Hancock & Mueller, 2001; Raykov, 
2004), Bentler’s rho (Bentler, 1968), the 
explained common variance method (see 
Sijtsma, 2009), as well as indices such as so-
called construct reliability and average 
variance explained (Fornell & Larcker, 1981) 
that attempt to assess the reliability of the 
underlying construct itself (cf., Hancock & 
Mueller, 2001).  

Whichever one, or ones, wind up 
succeeding Cronbach’s α, more important is 
that (1) something does, immediately, and 

(2) that it be approached from within a 
formal SEM framework. For the uninitiated 
practitioner, there are clear startup costs to 
learning the necessary modeling 
procedures. We believe, however, along with 
many others (e.g., Crutzen & Peters, 2017; 
Green & Yang, 2009; Peters, 2014; Schmitt, 
1996), that this investment is well worth the 
effort for the future of scale development 
and evaluation. 
 
Glossary 
True score – the long run expected value of 
a measure variable (e.g., of a scale item) for 
a given individual. 
Error score – the difference between an 
individual’s observed score on a variable 
(e.g., on a scale item) and the individual’s 
true score for that item. 
Parallel scale items – items on a 
unidimensional scale in which all items 
have the same amount of true score 
variance and error score variance. 
Tau-equivalent scale items – items on a 
unidimensional scale in which all items 
have the same amount of true score 
variance, although potentially different 
error score variance. 
Congeneric scale items – items on a 
unidimensional scale in which all items 
have potentially different true score 
variance and potentially different error 
score variance 
Cronbach’s α – a measure of scale reliability 
for unidimensional scales that assumes tau-
equivalent scale items. 
McDonald’s ω – a measure of scale reliability 
for unidimensional scales that assumes 
congeneric scale items. 

 
Self-assessment 

For this self-assessment, imagine that 
you have a unidimensional five-item scale, 
for which a simple-sum total score is 
desired, similar to the example in the 
module. The first part of this assessment 
revolves around the conceptual principles 
and best practices surrounding the 
assessment of that total score’s reliability. 
The second part of the assessment is 
performance based and uses the n = 300 
simulated cases from the first five items of 
the “Task Goal Orientation” scale (i.e., 
ignoring item 6). These and other questions 
are also available in the interactive module 
on the NCME website. 
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Part 1 – Conceptual Foundations  
1)   For a five-item scale, how many unique 

variances and covariances exist among 
those scale’s items? 

2)   Within an SEM framework, how many 
parameters would a parallel model, tau-
equivalent model, and congeneric model 
each have for explaining the items’ 
variances and covariances? What would 
those parameters be, specifically? 

3)   How many df would each of the parallel, 
tau-equivalent, and congeneric model 
have? 

4)   Which of these models would meet the 
assumptions of Cronbach’s α? 

 
Answers to Part 1 
1)   There are 5 unique item variances and 

10 unique item covariances, for a total 
of 15 unique values in the item 
covariance matrix. 

2)   Parallel model: 2 parameters (one 
common loading λ and one common 
error variance θ). 

 Tau-equivalent model: 6 parameters 
(one common loading λ and potentially 
different error variances θ1… θ5). 

 Congeneric model: 10 parameters 
(potentially different loadings λ1… λ5 
and potentially different error variances 
θ1… θ5). 

3)   The parallel model has 15-2=13 df; the 
tau-equivalent model has 15-6=9 df; and 
the congeneric model has 15-10=5 df. 

4)   Both the tau-equivalent and parallel 
models meet the assumptions of 
Cronbach’s α (with the parallel model 
being unnecessarily stringent). 

 
Part 2 – Applications 
Please use an SEM package of your choice to 
complete the following exercises. 
5)   Based on the raw data, use the 

computational formula in Equation 6 to 
estimate Cronbach’s α. You may do this 
by getting the necessary descriptive 
statistics to populate Equation 6 or use 
the software package of your choice to 
directly estimate α. 

6)   Using maximum likelihood estimation 
obtain data-model fit indices (e.g., χ2, 
AIC, BIC, SRMR, RMSEA, CFI) for the 
parallel, tau-equivalent, and congeneric 
models (double check that your df are 
correct for each model.) 

7)   Based on the parameter estimates from 
the tau-equivalent model, determine the 
model-based estimate of Cronbach’s α 
using Equation 5. 

8)   Based on the information criteria, which 
model would you select? Based on the χ2 
difference tests, which model would you 
select? 

9)   Based on the parameter estimates from 
the congeneric model, use Equation 8 to 
estimate McDonald’s ω. 

10) If your SEM software has the capabilities 
to model ω as an additional parameter, 
do so and verify that your resulting 
value matches the one you computed in 
question 9. 

11) Based on the accompanying maximum 
likelihood asymptotic standard error, 
compute and interpret a 95% confidence 
interval for ω. 

12) If your SEM software has bootstrapping 
capabilities, compute and interpret a 
95% bootstrap confidence interval (bias-
corrected or not) using 5000 bootstrap 
resamples. 

 

Answers to Part 2 
5)   Using SPSS, the computation estimate 

using the first five scale items is 

α̂ =.781. 
6)   Using Mplus: 
 Parallel model: χ2=408.931, 

AIC=412.931, BIC=420.339, SRMR=.604, 
RMSEA=.319, CFI=.153.  

 Tau-equivalent model: χ2=155.954, 
AIC=167.954, BIC=190.177, SRMR=.300, 
RMSEA=.233, CFI=.686. 

 Congeneric model: χ2=8.476, 
AIC=28.476, BIC=65.514, SRMR=.018, 
RMSEA=.048, CFI=.993.  

7)   α̂ =.704. (Note that this value differs 
from that computed in Question 5. As 
mentioned in the article, this is because 
the model-based value uses loadings 
forced to be equivalent whereas the 
traditional value merely assumes such 
equivalence.) 

8)   Lowest AIC and BIC values suggest the 
congeneric model. 

 χ2 difference tests also suggest con- 
generic to be statistically significantly 
better than the others (congeneric vs. 

parallel 2
diffχ = 400.455, df=8, p<.001; 
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congeneric vs. tau-equivalent 2
diffχ = 

147.478, df=4, p<.001) 

9)   ω̂ =0.825. 
10) Yes, the Mplus estimate matches: 

ω̂ =0.825. 

11) The asymptotic standard error for ω̂  is 
0.016. The 95% confidence interval for ω 
around 0.825 is (0.794, 0.856). 

12) Using Mplus, the 95% bias-corrected 
bootstrap confidence interval is (0.790, 
0.853). 
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