DM16 SLIDES (Version 1.0)

1. Module Overview

1.1 Module Cover (START)

1.2 Instructors

DM16 SLIDES 1 / 105 8/1/2020

1.3 Designers

1.4 Welcome

DM16 SLIDES 2 / 105 8/1/2020

Untitled Layer 1 (Slide Layer)

1.5 Overview

DM16 SLIDES 3 / 105 8/1/2020

1.6 Target Audience

1.7 Expecations (I)

1.8 Expectations (II)

1.9 Learning Objectives

DM16 SLIDES 5 / 105 8/1/2020

1.10 Prerequisites

Prerequisites ■ Working knowledge of the following topics: ✓ Hypothesis testing and p-value interpretation ✓ Principles of exploratory data analysis ✓ Multiple linear regression models ✓ General linear models / ANOVA models ■ Basic practical experience with: ✓ Summarizing data numerically and graphically ✓ Working with R and associated R packages ✓ Interpreting model output for decision-making

1.11 Resources

DM16 SLIDES 6 / 105 8/1/2020

References (Slide Layer)

1.12 Main Menu

DM16 SLIDES 7 / 105 8/1/2020

Navigation (Slide Layer)

2. Section 1: Conceptual Foundations

2.1 Cover: Section 1

2.2 Learning Objectives: Section 1

2.3 Importance of Longitudinal Research

DM16 SLIDES 9 / 105 8/1/2020

2.4 Topic Selection

2.5 Bookmark: Longitudinal Data

2.6 What Are Longitudinal Data

2.7 Why Collect Longitudinal Data

2.8 Types of Longitudinal Data I

2.9 Types of Longitudinal Data II

2.10 Bookend: Longitudinal Data

2.11 Bookmark: Mixed Effects Models

2.12 What Are Mixed Effects Models

MIXED-EFFECTS MODELS Flexible statistical models separate individual effects from population effects Accommodate many of the messier aspects that accompany longitudinal data (e.g., "missingness")

2.13 Why Use Mixed Effects Models

2.14 How Are Mixed Effects Models Different I

2.15 How Are Mixed Effects Models Different II

2.16 Bookend: Mixed Effects Models

2.17 Bookmark: Research Components

2.18 Components of Longitudinal Research

2.19 Types of Longitudinal Research Questions

2.20 Understanding Expected Change

Q1 (Slide Layer)

Q2 (Slide Layer)

Q3 (Slide Layer)

2.21 Understanding Spread

Q1 (Slide Layer)

Q2 (Slide Layer)

Q3 (Slide Layer)

2.22 Understanding Individuals

Q1 (Slide Layer)

Q2 (Slide Layer)

Q3 (Slide Layer)

2.23 Bookend: Research Components

2.24 Example NLSY

2.25 *Summary*

2.26 Bookend: Section 2

3. Section 2: Design and Data Considerations

3.1 Cover: Section 2

3.2 Learning Objectives: Section 2

3.3 NLSY Reading Recognition Skill

Sample Data (Slide Layer)

3.4 Topic Selection

3.5 Bookmark: Research Components

3.6 Components of Longitudinal Research

Reference (Slide Layer)

DM16 SLIDES 29 / 105 8/1/2020

3.7 Theoretical Model of Change

3.8 Data Collection Design

DM16 SLIDES 30 / 105 8/1/2020

3.9 Statistical Model

3.10 Bookend: Research Components

3.11 Bookmark: Data Designs

3.12 Design Issues and Solutions I

3.13 Design Issues and Solutions II

3.14 Accelerated Designs

3.15 Multiform Designs

Reference (Slide Layer)

3.16 Clustered Data

3.17 Balanceness & Completeness

3.18 Hypothetical Example I

3.19 Hypothetical Example II

3.20 Hypothetical Example III

3.21 Bookend: Data Designs

3.22 Bookmark: Handling Data Issues

3.23 Handling Design and Data Nuances

3.24 Not Recommended

3.25 Recommended

3.26 Data Structures I

3.27 Data Structures II

3.28 Bookend: Handling Data Issues

3.29 Summary

3.30 Bookend: Section 2

4. Section 3: Linear Mixed Effects Models

4.1 Cover: Section 3

4.2 Learning Objectives: Section 3

4.3 Topic Selection

4.4 Bookmark: Conceptual Underpinnings

4.5 Conceptual Underpinnings

4.6 Modeling Framework

4.7 Mixed Effects Models I

4.8 Bookend: Conceptual Underpinnings

4.9 Bookmark: Model Specification

4.10 Mixed Effects Models II

4.11 Mixed Effects Models III

4.12 Mixed Effects Models IV

4.13 Mixed Effects Models V

4.14 Mixed Effects Models VI

4.15 Linear Mixed Effects Models I

DM16 SLIDES 49 / 105 8/1/2020

4.16 Linear Mixed Effects Models II

4.17 Bookend: Model Specification

4.18 Bookmark: Three Components of LMEs

4.19 Component Selection

4.20 Bookmark: Functional Form

4.21 Functional Form of Change

4.22 Bookend: Functional Form

4.23 Bookmark: Variances and Covariances

4.24 Modeling Variances and Covariances I

4.25 Modeling Variances and Covariances II

DM16 SLIDES 54 / 105 8/1/2020

4.26 Modeling Variances and Covariances III

4.27 Modeling Variances and Covariances IV

4.28 Bookend: Variances and Covariances

4.29 Bookmark: Determinants of Change

4.30 Determinants of Change

4.31 Bookend: Determinants of Change

4.32 Bookmark: Estimation

4.33 Estimation

Estimation

LMEs are typically estimated using **maximum likelihood** under the assumption that the **data are multivariate normal**

$$\mathbf{y}_{i} \sim N\left(\underline{\mathbf{X}_{i}\boldsymbol{\beta}}, \ \underline{\mathbf{Z}_{i}\boldsymbol{\Phi}\mathbf{Z}_{i}' + \boldsymbol{\Theta}_{i}}\right)$$

Maximum Likelihood Estimation

- ✓ Assume the data follow a probability distribution
- ✓ Assume the data are a random sample from this distribution
- ✓ Find the parameter values that are best supported by the data

4.34 ML and REML

4.35 Bookend: Estimation

4.36 Summary

4.37 Bookend: Section 3

5. Section 4: LME Analyses

5.1 Cover: Section 4

5.2 Learning Objectives: Section 4

5.3 NLSY Data Recap

Reference (Slide Layer)

5.4 Topic Selection

5.5 EDA Recommendations

5.6 Descriptive Summaries I

5.7 Descriptive Summaries II

5.8 Missing Data

5.9 Graphical Summaries I

5.10 Graphical Summaries II

5.11 Bookend: Exploratory Data Analysis

5.12 Bookmark: Defining Growth Functions

5.13 Bookmark: Exploratory Data Analysis

5.14 Finding a Function for Change I

5.15 Finding a Function for Change II

5.16 Finding a Function for Change III

5.17 Finding a Function for Change IV

5.18 Finding a Function for Change V

5.19 Bookend: Defining Growth Functions

5.20 Bookmark: Are Random Effects Necessary

5.21 Are Random Effects Necessary I

```
Random Intercept Model to Compute the ICC y_{ij} = \beta_{0i} + e_{ij} \quad e_{ij} \sim N(0, \sigma^2)\beta_{0i} = \beta_0 + b_{0i} \quad b_{0i} \sim N(0, \varphi_{00})r.0.out <-lime (read ~ 1, data = read.long, na.action = na.omit, method = "ML", random = ~ 1 | id, control=list(maxIter=100))summary(r.0.out)ICC = \frac{\varphi_{00}}{\sqrt{\varphi_{00} \cdot \sigma^2}} = \frac{29.79}{\sqrt{29.79 \cdot 239.03}} \approx 0.111
```

5.22 Are Random Effects Necessary II

5.23 Testing Variances of Random Effects I

5.24 Testing Variances of Random Effects II

5.25 Testing Variances of Random Effects III

Reference (Slide Layer)

5.26 Bookend: Random Effects

5.27 Bookmark: Residual Covariance Structure

5.28 Residual Variances and Covariances I

5.29 Residual Variances and Covariances II

5.30 Residual Variances and Covariances III

5.31 Bookend: Residual Covariances

5.32 Bookmark: Determinants of Change

5.33 Determinants of Change I

5.34 Determinants of Change II

5.35 Determinants of Change III

5.36 Determinants of Change IV

	Parameter	Unconditional Model	Conditional Model	
$\operatorname{ar}_{slpdiff} = 100 \times \left(\frac{2.32 - 2.16}{2.32}\right) = 6.90\%$	β_{\circ}	25.23	25.23	
		7.81	7.81	
	β	-3.41	-3.43	
	β	n/a	0.31	
	β_1 β_2 β_3 β_4	n/a	0.24	
	β ,	n/a	-0.13	
	φ_{∞}	60.90	60.23	
	φ_{i0}	1.96	1.50	
	φ_{11}	5.96	5.55	
	φ_{20}	-3.18	-2.93	
	Ø.,	-3.43	-3.18	
	φ_{22}	2.32	2.16	
	σ^2	24.72	24.73	
	Explained Variance Intercept, Slope, and Slope Difference			
		Slope Dillere	ance.	

5.37 Bookend: Determinants of Change

5.38 Bookmark: Assumptions and Diagnostics

5.39 LME Assumptions & Diagnostics

5.40 Bookend: Assumptions & Diagnostics

5.41 Summary I

5.42 Summary II

5.43 Bookend: Section 4

6. Section 5: Data Activity

6.1 Cover: Section 5

6.2 Learning Objectives

6.3 Topic Selection

6.4 Bookmark: Get Acquainted with R

6.5 Many Sides of R

Many Sides of R

- Two primary options exist for working with data in R: "Base R" and "Tidyverse"
- In this module, we will demonstrate how users can leverage tidyverse packages and principles for each stage of a longitudinal data analysis.

Base R:

- Access to variety hundreds of great statistical packages exist on CRAN and most are not part of Tidyverse
- May have advantages in computational speed

Tidyverse:

- · Data-science oriented
- Consistent logic across packages and functions
- Active development & emerging resources for complex statistical models

6.6 Welcome to Tidyverse

6.7 Tidyverse for Longtitudinal Data

6.8 Selected Tidy Functions for Longitudinal Data

6.9 Bookend: Get Acquainted with R

6.10 Bookmark: Perform Exploratory Data Analysis

6.11 EDA1:Load the Data

Code (Slide Layer)

6.12 EDA 2: Determine Necessary Manipulations

Code (Slide Layer)

6.13 EDA 3: Summarize and Describe the Data

Code (Slide Layer)

6.14 EDA 3: Example Table

Example Table				
Anti-Social Behavior Descriptives Sample size, means, & variances of anti-social scores across age:				
	Anti-Soci	Anti-Social Scores by Age		
Child Age	Sample Size	Mean	Variance	
6	122	1.57	2.78	
7	168	1.55	2.42	
8	146	1.97	3.23	
9	192	1.89	3.82	
10	151	2.14	4.56	
11	174	1.79	3.80	
12	135	1.84	3.17	
13	173	2.24	5.16	
14	101	1.96	4.36	
15	8	1.12	3.55	
NA	250	_	_	

6.15 EDA 4: Visualize Change Over Time

6.16 EDA 4: Example Plot

6.17 Bookend: Perform Exploratory Data Analysis

6.18 Bookmark: Conduct Mixed-Effects Modeling Using {nlme}

6.19 Graphical Eval: Model Assumptions

6.20 Model Fit 1: Calculate the ICC

6.21 Model Fit 2: Identify "Best" Model Structure

6.22 Model Fit 3: Test Covariates of Interest

6.23 Bookend: Conduct Mixed-Effects Modeling Using {nlme}

6.24 Bookmark: Graphically Evaluate Model Assumptions

6.25 Graphical Eval: Diagnostic Plots in R


```
NOTE: The nlme::ranef() function
model_eval <- cond_reml %>%
                                     extracts the estimated random effects
nlme::ranef(., condVar = TRUE) %>%
                                     from the model object "cond_reml".
tibble::as_tibble(.) %>%
dplyr::mutate(
 person_id = dat_final %>% dplyr::distinct(., person_id) %>% unlist(.),
 .before = "(Intercept)"
) %>%
dplyr::rename(., resid int = `(Intercept)`, resid age = child age) %>%
dplyr::mutate(
                                              NOTE: In the last step, level-1
 resid_id = residuals(mod, type = "pearson"),
                                              residuals and fitted values are
 fitted_id = fitted(mod)
                                              extracted using the "residuals"
                                              and "fitted" functions from base R.
NOTE: Using the dplyr::right_join function, we can merge
the level-2 random effects back with the "dat_final" dataset.
                                                                    Back
```

6.26 Graphical Eval: Normality of Random Effects

6.27 Graphical Eval: Constant Error Variance

DM16 SLIDES 100 / 105 8/1/2020

6.28 Graphical Eval: Independence of Error Terms Across Levels

6.29 Bookend: Graphical Evaluation

DM16 SLIDES 101 / 105 8/1/2020

6.30 Bookmark: Real Data Analysis

6.31 Example 1

6.32 Graphical Evaluation

6.33 Example 2

6.34 End of Section

6.35 Bookend: Data Activity

6.36 Module Cover (END)

