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Mokken scale analysis (MSA) is a probabilisticcnonparametric approach to item response theory
(IRT) that can be used to evaluate fundamental measurement properties with less strict
assumptions than parametric IRT models. This instructional module provides an introduction to
MSA as a probabilistic-nonparametric framework in which to explore measurement quality, with an
emphasis on its application in the context of educational assessment. The module describes both
dichotomous and polytomous formulations of the MSA model. Examples of the application of MSA
to educational assessment are provided using data from a multiple-choice physical science
assessment and a rater-mediated writing assessment.
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M ethods based on item response theory (IRT) are fre-
quently used to inform the development, interpreta-
tion, and use of educational assessments across a wide range
of contexts. These methods are useful because they provide
information about the relationship between student locations
on a latent variable and the probability for a particular re-
sponse (i.e., the item response function; IRF). Within the
context of educational measurement, the most frequently ap-
plied IRT models are based on a parametric formulation, in
which a specific algebraic form is specified that defines the
shape of the IRF, and transformations are used that result
in measures on an equal-interval scale. It is also possible
to explore measurement properties using a nonparametric
approach to IRT, such as Mokken scale analysis (MSA).

MSA (Mokken, 1971) is a probabilistic-nonparametric ap-
proach to IRT that provides a systematic framework for eval-
uating measurement quality in terms of fundamental mea-
surement properties. Models based on MSA are considered
nonparametric because the relationship between the latent
variable and the probability for a response (i.e., the IRF) is
not required to match a particular shape, as long as basic
ordering requirements are met (discussed further below).
Mokken (1971) summarized his motivation for developing
this approach to item response modeling as follows:

In vast areas of social research the application of parametric
models may often be too far fetched. Their application presup-
poses a relatively deep insight into the structure of the variable
to be measured and the properties of the items by which it can
be measured ... [and] lead to procedures of inference and
estimation that are too pretentious and intricate for the level
of information and the precision that can be claimed for the
data used in actual measurement. (p. 173)

In addition to its use as an alternative to parametric IRT,
several scholars have recognized the usefulness of MSA in
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its own right as a method for exploring fundamental mea-
surement properties, including invariant person and item
ordering, when an ordinal level of measurement is suffi-
cient to inform decisions based on a measurement proce-
dure. In particular, several authors (Chernyshenko, Stark,
Chan, Drasgow, & Williams, 2001; Meijer & Baneke, 2004;
Meijer, Tendeiro, & Wanders, 2015; Reise & Waller, 2009)
have pointed out that nonparametric IRT in general, and
MSA in particular, is an especially useful approach in con-
texts in which the underlying response processes are not well
understood, such as affective variables. Although MSA has
been widely applied to a variety of affective domains, the use
of this approach in the context of educational assessments
is less common. The perspective emphasized throughout this
module is that educational achievement tests also involve re-
sponse processes that are not well understood, and that MSA
provides a useful framework for exploring fundamental mea-
surement properties of these assessments, including the de-
gree to which invariant student and item ordering is observed.
For example, performance assessments involve complex re-
sponse processes in which raters are asked to “translate” their
perception of student achievement to a rating scale, using a
judgmental process that is mediated by many interacting vari-
ables, such as student performances, rubrics, rating scales,
and individual rater characteristics. Likewise, response pro-
cesses for multiple-choice (MC) items involve the interaction
between students’ locations on alatent variable, item formats,
assessment contexts, and other student characteristics.

The application of MSA to educational assessments is ap-
propriate when researchers are interested in exploring the
degree to which an assessment conforms to fundamental mea-
surement properties, such as during assessment development
or revision. Similarly, this approach is useful in contexts in
which information about measurement quality and person
and item ordering is needed, but sample sizes are not suf-
ficient to achieve stable estimates based on parametric IRT
models. In particular, the investigation of MSA models is use-
fulin that evidence of adherence to MSA model requirements
provides support for the interpretation of total scores (i.e.,
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sum scores) to meaningfully order persons and items on the
latent variable without any parametric transformations. MSA
is also appropriate when the desired conclusions from an as-
sessment procedure do not require an interval-level scale,
but can be informed by ordinal information related to stu-
dents and items. When interval-level measures are needed
(e.g., for computerized adaptive testing or certain equating
procedures), the procedures illustrated in this module can
provide an initial exploratory overview of the degree to which
the measurement procedure adheres to basic measurement
requirements that can act as a lens through which to explore
the data using both numeric results and graphical displays
(Sijtsma & Meijer, 2007).

Purpose

The purpose of this instructional module is to provide an
introduction to MSA as a probabilistic-nonparametric frame-
work in which to explore measurement quality, with a special
emphasis on its application to the context of educational as-
sessment. Several introductions to MSA have been published,
including two introductory level books (Sijtsma & Molenaar,
2002; van Schuur, 2011), several book chapters (Meijer et al.
2015; Mokken, 1997; Molenaar, 1997), and a tutorial related
to the use of this approach in psychology (Sijtsma & van
der Ark, 2017). However, a brief module that presents an
accessible and didactic introduction to MSA in the context
of educational assessment has not been published. Further-
more, the ITEMS instructional module series has not yet in-
cluded a presentation of nonparametric techniques for eval-
uating the quality of educational assessments. By presenting
an introduction to MSA in the form of an ITEMS module,
[ hope to provide a concise and accessible summary of the
key features of this approach and its applications in educa-
tional assessment that will benefit practitioners, researchers,
and students who are interested in learning more about this
approach.

The module is organized as follows. First, I present an
overview of Mokken’s (1971) original dichotomous monotone
homogeneity (MH) and double monotonicity (DM) models,
followed by a discussion of Molenaar's (1982, 1997) poly-
tomous formulations of the MH and DM models. Second, I
present a general procedure for applying MSA to educational
assessments. The module concludes with illustrations of the
application of the general procedure to educational assess-
ments that highlight the feasibility and usefulness of this
approach across multiple types of educational measurement
procedures.

Mokken Scaling Models for Dichotomous Responses

In the original presentation of MSA, Mokken (1971) pre-
sented two models for evaluating the quality of scales made
up of dichotomous items (scored asX =0 orX =1). In order
for dichotomous responses to be suitable for MSA, a score of 1
should reflect a higher location on the latent variable (in the
context of achievement tests: higher ability) than a score of
0. The first model is the MH model, which is the more general
of the two original MSA models. The MH model is based on
three underlying assumptions that can be defined as follows:
(1) Monotonicity: As person locations on the latent variable
increase, the probability for correct response (X = 1) does
not decrease; (2) Unidimensionality: Item responses reflect
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evidence of a single latent variable; and (3) Local indepen-
dence: Responses to an item are not influenced by responses
to any other item, after controlling for the latent variable.

Several properties are important to note about the MH
model. First, the MH model does not restrict the shape of the
IRF beyond the requirement for monotonicity. As a result,
IRFs that adhere to the MH model may take on a variety
of shapes that do not necessarily match the logistic ogive
shape thatis typically associated with parametric IRT models.
Figure 1(A) shows a pair of IRFs for dichotomous items that
meet the assumptions of the MH model. Specifically, the y-axis
shows the probability for a correct response (i.e., the IRF),
and the z-axis represents the latent variable (6). Although
the IRFs for Item ¢ and Item j are intersecting, they adhere
to the MH model requirements because they do not decrease
over increasing locations on the latent variable. Second, when
data fit the MH model assumptions, the relative ordering
of students on the latent variable is invariant across items.
Because fit to the MH model assumptions provides evidence
for invariant ordering of persons across items, this model can
be viewed as analogous to the two-parameter logistic model
in parametric IRT.

Mokken’s (1971) second model is the DM model, which is a
special case of the MH model. The DM model shares the same
three assumptions as the MH model, but includes a fourth
assumption: (4) Imvariant item ordering (I10): Response
functions for individual items do not intersect with response
functions for any other item. Under the DM model, IRFs may
take on a variety of shapes as long as they do not intersect.
Figure 1(B) shows a pair of IRFs for dichotomous items that
meet the assumptions of the DM model. In contrast to the
plot in Panel A, the pair of items shown in Panel B meets
the DM model requirements because the IRFs for Item ¢ and
Item k£ are both monotonic (nondecreasing over the latent
variable), and nonintersecting. The important result of this
requirement for dichotomous items is that when data fit the
DM model assumptions, the items are ordered the same way
across students. Because fit to the DM model assumptions
provides evidence for invariant ordering of both students and
items, this model has been described as an ordinal version of
the dichotomous Rasch model, or the one-parameter logistic
model in parametric IRT (Engelhard, 2008; Meijer, Sijtsma,
& Smid, 1990; van Schuur, 2003).

Mokken Scaling Models for Polytomous Responses

Molenaar (1982, 1997) proposed polytomous formulations of
the MH and DM models that have facilitated the widespread
application of MSA to a variety of domains in which rat-
ing scales are used. The polytomous MH and DM models
are based on the same underlying assumptions as Mokken’s
(1971) dichotomous formulations. However, under the poly-
tomous formulation, the model assumptions are evaluated for
eachitem both at the overall item level and within rating scale
categories. Similar to parametric IRT models for polytomous
items, the polytomous MH and DM models are based on a set
of response functions that describe the probability for a rating
in or above a particular rating scale category across values of
the latent variable.

In the context of MSA, response functions for rating scale
categories (i.e., category response functions) are called item
step response functions (ISRFs; Molenaar, 1982, 1997). For a
rating scale with k categories, a set of k — 1 ISRF's are specified
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FIGURE 1. Mokken item response functions.

that reflect the probability for a response in a given rating
scale category or higher across levels of the latent variable.
According to Molenaar (1997, p. 370), Mokken ISRFs can be
conceptualized as a set of ¥ — 1 “steps” (73 ) that reflect the
observed rating in category k£ on Item 7 for person j, where
T = 1 whenXj; > k, and T3 = 0 otherwise, where Xj; is the
observed score on Item 7 for person .

Similar to the dichotomous MH model, Molenaar’s (1982)
polytomous version of the MH model is based on the require-
ments of unidimensionality, local independence, and mono-
tonicity. However, these requirements are evaluated within
rating scale. Accordingly, the monotonicity assumption is re-
stated as: Momotonicity: The conditional probability for a rat-
ing in category £ or higher is nondecreasing over increasing
values of the latent variable. Figure 1(C) illustrates a set of
ISRFs for a rating scale item with four categories that meets
the assumptions of the polytomous MH model. The three lines
represent the thresholds for a rating in the second category or
higher (highest ISRF), the third category or higher (middle
ISRF), and the fourth category or higher (lowest ISRF).

An important difference between the dichotomous and
polytomous versions of the MH model should be noted. Specif-
ically, whereas adherence to the MH model requirements for
dichotomous items implies that the order of student total
scores on the raw score scale reflects their ordering on the la-
tentvariable (0;i.e., stochastic ordering on the latent variable
[SOL]), aweaker version of SOL is implied by the polytomous
MH model (van der Ark & Bergsma, 2010). Weak SOL implies
that the total score (X+) can be used to divide a sample into
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a group of students with high locations on the latent variable
and a group of students with low locations on the latent vari-
able, such that students with the highest and lowest 6 values
can be identified by dividing X+ into two groups.

The polytomous DM model (Molenaar, 1982, 1997) shares
the requirements of the polytomous MH model, with the addi-
tional assumption of nonintersecting ISRFs: Nonintersecting
ISRFs: The conditional probability for a rating in category &
or higher on Item ¢ has the same relative ordering across all
values of the latent variable.

Figure 1(D) illustrates a set of ISRFs for a rating scale
item with four categories that meets the assumptions of the
polytomous DM model.

Recent research related to the polytomous DM model has
highlighted a lack of necessary correspondence between non-
intersecting ISRFs and the invariant item-ordering property
that characterizes the dichotomous DM model. Specifically,
explorations of 110 have highlighted the possibility that non-
intersecting response functions for rating scale categories
for a pair of items, which suggest fit to the polytomous DM
model, do not always correspond to II0 when aggregated to
the overall item level (Ligtvoet, van der Ark, Bergsma, &
Sijtsma, 2011; Ligtvoet, van der Ark, te Marvelde, & Sijtsma,
2010; Sijtsma & Hemker, 1998; Sijtsma, Meijer, & van der
Ark, 2011). This phenomenon is illustrated in Figure 2 for
two pairs of polytomous items. For example, Panels A and B
illustrate the aggregation phenomenon for Item ¢ and Item
J: Panel A shows the ISRFs and Panel B shows the IRFs. As
can be seen in Panel A, the ISRFs for the two items do not
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FIGURE 2. Aggregation phenomenon for polytomous items.

intersect—thus meeting the nonintersection requirement of
the polytomous DM model. However, the aggregation of the
ISRFs in Panel B illustrates intersecting IRFs for the two
items, which is a violation of I10. The opposite result is also
true: Figure 2, Panels C and D, illustrates two items for which
intersecting ISRFs (Panel C) correspond to nonintersecting
IRFs (Panel D).

The recommended solution to this discrepancy between
DM and IIO, or aggregation phenomenon (Ligtvoet et al.,
2011), is to evaluate 110 only as it applies to overall items.
Specifically, the combined requirement of invariant ordering
at the level of rating scale categories and for the overall item
has been described as having “little practical value” and as
“unrealistic for many data sets” (Sijtsma et al. 2011, p. 34).
Instead, researchers are encouraged to use techniques such
as the manifest 110 procedure (MIIO) proposed by Ligtvoet
etal. (2010,2011),in which I10 is examined using only overall
item scores (using IRFs), while ignoring invariant ordering at
the level of rating scale categories. I discuss the MIIO method
further in the next section, and demonstrate the approach in
the illustrative analyses at the end of the module.

Software for MSA

A variety of graphical displays and statistics are available for
evaluating fit to the dichotomous and polytomous MH and
DM models. These methods can be implemented automati-
cally using a standalone program: MSP5 (Molenaar & Sijtsma,
2000), as well as in two statistical software programs: (1) the
mokken package (van der Ark, 2007,2012) can be used to con-

4 © 2017 by the National Council on Measurement in Education

B Item i/ (solid), Item j (dashed)

=0
2
' LS
=2
=
g 1
=
0.5
0 -
Low High
Latent Variable (0)
D Item k (solid), Item / (dashed)
3
25

Mean Rating
&

Low High
Latent Variable (0)

duct MSAinR; and (2) the commands described by Hardouin,
Bonnaud-Antignac, and Sebille (2011) can be used to conduct
MSA in the Stata program.

The MSP5 program includes a graphical interface, in which
researchers can import data in standard tabular formats (e.g.,
spreadsheet formats or comma-separated files), and conduct
analyses by selecting procedures from dropdown menus. The
mokken package and Stata commands can also be used to ex-
plore data stored in any tabular file format, after it has been
read into the software. Although these programs require the
use of a command-line interface to conduct analyses, the
functions only require a basic understanding of £ and Stata.
Furthermore, the functions are described in detail and ex-
amples of procedures for conducting MSA are available in
the documentation for both the mokken package (van der
Ark, 2007, 2012) and the Stata commands (Hardouin et al.,
2011). All three programs provide tabular output of numeri-
cal results that can be exported to other formats, including
comma-separated files, as well as graphical displays that can
be exported as images.

Because the MSP5 program is no longer being updated,
any developments in MSA research will not be made avail-
able in this program. In contrast, the mokken package is
frequently updated, and includes several advances that are
not available in MSP5, such as the MIIO procedure (Ligtvoet
et al., 2010), standard errors for scalability coefficients
(Kuijpers, van der Ark, & Croon, 2013), and confidence in-
tervals for response function plots. Accordingly, the methods
illustrated in this module are illustrated using the mokken
package.

Educational Measurement: Issues and Practice



Evaluating Measurement Quality Using MSA

Figure 3 provides a simplified version of a procedure for ap-
plying MSA as a framework for evaluating the measurement
properties of an educational assessment that includes four
major steps: (1) import the data matrix; (2) analyze as-
sessment opportunities (AOs); (3) interpret results within
context; and (4) modify AOs. In this section, I describe each
step in Figure 3 theoretically. Then, I illustrate the proce-
dure using data from an educational assessment made up
of dichotomously scored MC items, and an educational per-
formance assessment in which students received polytomous
ratings on written compositions. These two examples high-
light the use of MSA for dichotomous scores and polytomous
ratings, respectively. Accordingly, they highlight the wide
range of educational assessments that can be explored using
MSA.

Import the Data Matriz

The first step in the procedure is to import the data matrix
into a software program for MSA. The first panel of Figure 3
shows the basic structure of the data matrix that is used as
the starting point for MSA. For basic applications of MSA, data
that are included in the analysis include student responses
to AOs. In this module, the term AO is used to describe proce-
dures used to evaluate students in an educational assessment
that result in ordinal scores. For example, AOs can be items,
such as MC items, or individual raters who score each student
in a performance assessment. Each of the rows of the matrix
(1 through N) represents a student (%), each of the columns

(1 through L) represents an AO (7), and each cell contains
the ordinal scored responses for each student to each item

(Xm)

Analyze AOs

After the data have been imported into software for MSA,
the second step in the procedure for analyzing educational
assessments using MSA is to analyze the AOs using indi-
cators of measurement quality based on the MH and DM
models. In this module, I focus on three categories of indi-
cators that can be used to evaluate measurement quality:
(A) monotonicity, (B) scalability, and (C) invariant order-
ing. Table 1 summarizes the alignment between these three
categories and the Mokken model assumptions described
above.

Monotonicity. The first indicator of measurement quality
based on the MH model is monotonicity. For dichotomous
items, monotonicity suggests that the probability for a cor-
rect response is nondecreasing across increasing locations on
the latent variable (6). For polytomous ratings, monotonic-
ity implies that the cumulative probability for a rating in or
above each rating scale category [P(X; = k)] is nondecreas-
ing across increasing levels of student achievement within a
given rating scale item or for a particular rater (discussed
further below).

Because the MH model does not facilitate the estimation
of latent variable locations for persons (€), a nonparamet-
ric approximation is needed to evaluate the monotonicity

1. Import Data Matrix

2. Analyze Assessment Opportunities (AO)

Assessment Opportunities (i) A. Monotonicity

1 L Response Functions

Response )
i . Functions within for Rating Scale
1 | Ordinal Scored Responses: Categories (within
AOs

— AOs)
= X,
«n ni
:,‘:-; ’ i // 3 7
S * Dichotomous (0,1) : J
& or —— - -

N * Polytomous (0, ..., k) (Dichotomous & (Polytomous)

Polytomous)

+ Hypothesis Tests & Confidence Intervals

B. Scalability
* Individual AOs:

H;=1-F,/E,
e Pairs of AOs:

H, :l_zF:j

J#i

C. Invariant Ordering

Joint Response Functions
for Pairs of AOs:

/ZEU i _’

J# wl =

* AllAOs:

HZI_ZE;‘/ZEIJ

+ Hypothesis Tests & Confidence Intervals

(Dichotomous & Polytomous)

+ Hypothesis Tests & Confidence Intervals

3. Interpret Results within Context

* Assessment
consequences
* Intended
interpretation & use

*  Practical
considerations

* Content coverage

O

o]
Findings for Individual AOs:

e Monotonic/ Non-monotonic
e Scalable / Unscalable
e Invariant Order / Variant Order

4. Modify Assessment Opportunities

Revise, Remove, or Replace mis-fitting
AOs as appropriate, given interpretation
within context of the assessment

Continue Iterating as Needed

FIGURE 3. Procedure for applying Mokken scale analysis in the context of educational measurement.
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Table 1. Alignment Between Mokken Model Assumptions and Indicators of Measurement Quality

Double Monotonicity

Monotone Homogeneity

Assumptions Model Model Model-Based Indicators
Monotonicity Vv Vv (A) Item/Rater
monotonicity
Conditional Independence v V (B) Item/Rater scalability
coefficients
Unidimensionality Vv Vv (A) ltem/Rater
monotonicity;
(B) ltem/Rater scalability
Nonintersecting Response Functions v (O) Invariant item/rater

ordering

assumption. As a result, Mokken analyses are conducted us-
ing an estimate based on unweighted sum scores (X, ) for
each student across an entire set of items or raters. Mokken
(1971) demonstrated that an ordering of students according
to X, serves as an estimate of their ordering according to
6 (Molenaar, 1982; van der Ark, 2005). In order to evaluate
model assumptions for an item of interest, Junker (1993)
proposed the use of the restscore (R), which is the sum score
minus the score on the AO of interest (Hemker, Sijtsma, Mole-
naar, & Junker, 1997; Junker, 1993; Junker & Sijtsma, 2000;
Sijtsma & Molenaar, 2002).

Several methods exist for evaluating monotonicity for non-
parametric IRT models in general, including kernel smooth-
ing (e.g., Mazza, Punzo, & McGuire, 2014; Ramsay, 1991).
Within the context of MSA, a simple approach to evaluat-
ing monotonicity based on restscores is generally used; this
method is provided in the mokken package for R (van der
Ark, 2007, 2012). First, restscores are calculated using the
total observed score for each student across a set of AOs,
minus the scores assigned on the AO of interest. In order to
provide additional statistical power, students with adjacent
restscores are combined to form restscore groups that reflect
the range of latent variable locations. The mokken package
(van der Ark, 2007, 2012) creates restscore groups automat-
ically based on Molenaar and Sijtsma’s (2000) criteria for
minimum sample sizes within restscore groups. By default,
the minimum sample size within restscore groups is N/10 for
samples larger than 500; N/5 for samples between 200 and 500,
and NV/3 for smaller sample sizes, with a minimum of 50 per-
sonsin each group. Along the same lines, van Schuur (2011, p.
52) recommended checking the sample size within restscore
groups in order to ensure that a single participant does not
make up more than 2% of a restscore group. It is important
to note that for monotonicity analyses, restscore groups are
calculated separately for each AO of interest. As a result, a dif-
ferent number of restscore groups might be observed across
AOs. After restscore groups are calculated, monotonicity is in-
vestigated using graphical displays and statistical hypothesis
tests.

For dichotomous items, the graphical procedure for eval-
uating monotonicity involves plotting the probability for a
correct response as a function of restscore groups. When
MSA is used for dichotomous items, these probabilities are
calculated as the proportion of students within a restscore
group who earned a score of 1 on the dichotomous AO of inter-
est. Figure 4(A) illustrates this procedure for a dichotomous
item. In this figure, student restscores are plotted along the
z-axis, and the probability for a correct response is plotted
along the y-axis. No violations of monotonicity are observed
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for Item ¢ because the IRF is nondecreasing over increasing
values of restscores.

For polytomous ratings, monotonicity is evaluated for over-
all AOs and within rating scale categories. First, overall
monotonicity is evaluated by examining the average observed
ratings across increasing restscore groups. As illustrated in
Figure 4(B), nondecreasing average ratings (y-axis) across
increasing restscore groups (2-axis) provides evidence of
monotonicity for an overall AO. Next, monotonicity can be
evaluated within rating scale categories using plots of ISRFs
for an item or rater of interest. Figure 4(C) illustrates adher-
ence to the monotonicity assumption because the ISRFs are
nondecreasing over increasing restscores. When the graphical
approach to investigating monotonicity is used, it is also possi-
ble to plot confidence intervals around the estimated response
functions as additional evidence regarding the stability of the
results. Specifically, the mokken package provides optional
Wald confidence intervals that can be added to monotonicity
plots for both dichotomous and polytomous AOs (van der Ark,
2013).

Statistical hypothesis tests (Z tests; see Molenaar &
Sijtsma, 2000, p. 72) for detecting significant violations of
monotonicity are available for both dichotomous and polyto-
mous scores. For dichotomous items, a one-sided, one-sample
Z test is used to evaluate the null hypothesis that the prob-
ability for a correct score is equal across adjacent restscore
groups, against the alternative hypothesis that the probabil-
ity for a correct response is lower in the group with a higher
restscore, which would be a violation of monotonicity. A sim-
ilar Z test is used for polytomous AOs, where the cumulative
probability for a rating in category £ or higher is compared
across adjacent restscore groups. These hypothesis tests for
monotonicity can be calculated for individual AOs using the
mokken package for B (van der Ark, 2007, 2012).

Scalability. The next category of measurement quality in-
dices based on the MH model is scalability. Mokken (1971)
presented extensions of the scalability coefficients originally
proposed by Loevinger (1948) that are used to describe the
degree to which individual items, pairs of items, and overall
sets of items form a scale that can be used to order persons
on a construct. In the context of MSA, scalability coefficients
have been described as a method for evaluating a variety
of measurement properties, including unidimensionality and
local independence (Meijer et al., 2015). However, there is
some debate regarding the interpretation of scalability coeffi-
cients in dimensionality analyses (e.g., Smits, Timmerman, &
Meijer, 2012). Nonetheless, scalability coefficients are used

Educational Measurement: Issues and Practice
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FIGURE 4. Monotonicity plots.

in practice to evaluate adherence to the MH model in the
context of MSA.

Indicators of scalability provide a summary of the influ-
ence of Guttman errors (described below) on the quality of
a measurement procedure, where fewer Guttman errors fa-
cilitate the interpretation of person total scores as indicators
of person ordering on the construct. Figure 5 illustrates the
procedure for detecting Guttman errors for a set of dichoto-
mous items. In both panels, students are ordered from high
to low in terms of achievement levels, and items are ordered
from easy to difficult. Cell entries with “1” indicate a correct
response, and cell entries with “0” indicate an incorrect or
negative response. The item responses in Panel A reflect a
perfect Guttman pattern, because no combinations of incor-
rect scores on easier items with correct scores on difficult
items are observed. Panel B includes two Guttman errors
(indicated with a *).

For both dichotomous and polytomous AOs, scalability co-
efficients reflect the ratio of observed Guttman errors to the
expected frequency of Guttman errors that would be observed
based on chance alone within a pair of items:

Hij=1--2 1
i=1-g (M

where F; is the observed frequency of Guttman errors, and £
is the expected frequency of Guttman errors. When data fit
the MH model, values of scalability coefficients are positive,
and range from zero to one, where a value of one indicates
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Mean Rating

R=0-17 R=18-26 R=27-37

Restscore Group

R=38-57

no Guttman errors, and values closer to zero indicate many
Guttman errors.

In order to illustrate the calculation of #7j; for a pair of di-
chotomous items, Table 2 shows the observed joint frequency
of correct and incorrect responses to Item ¢ and Item j for a
group of 268 students. Inspection of the marginal frequencies
reveals that Item ¢ (total correct = 186) is easier than Item
J (total correct = 113). Accordingly, the order of these items
in terms of difficulty isj < ¢ Based on this overall ordering,
Guttman errors are defined as combinations of an incorrect
or negative response on Item 7 and a correct response on
Itemj (X(;;) =0,1). The corresponding error cell is marked,
where it can be seen that the observed frequency of Guttman
errors is 16. The expected frequency of Guttman errors is
calculated based on statistical independence, where the
expected frequency within a cell is calculated as: (Row total *
Column total)/N. The expected frequency for the error cell in
Table 2 is (82 * 113)/268 = 34.57. Using observed and
expected frequencies of Guttman errors, scalability is
calculated as

16

Hi=1-—— =
Y 34.57

54, (2)

Scalability coefficients are calculated for individual AOs
(H;) using observed and expected Guttman error frequencies
for all pairs associated with the item of interest. Likewise,
scalability coefficients for an overall set of AOs (H) are cal-
culated using one minus the ratio of observed and expected
Guttman error frequencies for all pairs of AOs.
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Panel A: Responses Contain No Guttman Errors
Items
Students Easy > Difficult
Item 1 Item 2 Item 3 Item 4 Item 5
High | Student 1 1 1 1 1 1
Student 2 1 1 1 1 0
l Student 3 1 1 1 0 0
Student 4 1 1 0 0 0
Low | Student 5 1 0 0 0 0
Panel B: Responses Contain Two Guttman Errors
Items
Students Easy = Difficult
Item 1 Item 2 Item 3 Item 4 Item 5
High | Student 1 0%* 1 1 1 1
Student 2 1 1 1 1 0
1 Student 3 1 1 1 0 0
Student 4 1 1 0 0 0
Low | Student 5 1 0 0 0 1*

FIGURE 5. Guttman patterns. *Guttman error.

Table 2. Observed Joint Frequencies of Item i
and Item j

Itemj=0 Itemj=1 Total
Itemi=0 66 16* 82
Itemi=1 89 97 186
Total 155 113 268

In addition to the observed and expected error frequency
method described above, scalability coefficients can also
be calculated using covariances. This method involves cal-
culating the observed covariance between two AOs, and
the covariance that would be obtained if no Guttman er-
rors were observed (maximum covariance). For additional
details regarding the calculation of scalability coefficients
using the covariance method, see Sijtsma and Molenaar
(2002, pp. b2-53).

Molenaar (1991) presented polytomous formulations of
the scalability coefficients for individual items, item pairs,
and overall groups of items. Using the observed and expected
Guttman error method, the polytomous ; coefficient is cal-
culated as follows. First, the cumulative category probabilities
(ISRFs) are used to establish the Guttman pattern for each
pair of AOs. For example, the Guttman pattern for a pair in-
cluding polytomous Item ¢ and polytomous Item j might be
defined asX; > 1, X; > 2, X; > 1, X; > 2, X, 2 3, X; > 3
based on the observed cumulative probabilities for each item.
If no Guttman errors were observed, each pair of observed
ratings within the pair of items (X, X;) would follow this se-
quence, such that the expected order with no Guttman errors
would be defined as (0,0), (1,0), (2,0), (2,1), (2,2), (3,2),
(3,3). Observations in the other cells in the joint frequency
table for this pair of items are defined as Guttman errors (see
Table 3). Weights are defined for each error cell by calcu-
lating the number of errors involved in arriving at the score
pattern, based on the Guttman pattern established using the
cumulative probabilities (for additional details about weights,
see Molenaar & Sijtsma, 2000, pp. 20-22). The (weighted)
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observed and expected frequencies of Guttman errors are
used to calculate /; using Equation 1.

Interpreting values of scalability coefficients. When data
fit the MH model, values of H range from .00 < A < 1.00,
where a value of 1.00 indicates a perfect Guttman pattern
(no observed Guttman errors). It is common practice within
MSA to apply rule-of-thumb critical values for the A coeffi-
cientin order to evaluate the quality of a scale (Mokken, 1971,
Molenaar & Sijtsma, 2000). Typically, the following criteria
are applied: # > .50: strong scale; .40 < H < .50: medium
scale; .30 < H < .40: weak scale. Although these classifica-
tion criteria frequently appear in empirical applications of
MSA, their interpretation and use varies across applications
with different purposes. In particular, because scalability co-
efficients have primarily been considered in psychological
measure of affective or developmental variables, these rule-
of-thumb values may not hold the same interpretation for
educational achievement tests, especially those that involve
raters (discussed further below). Furthermore, when scala-
bility coefficients are calculated for persons, several scholars
have recommended the use of zero as a lower-bound critical
value for evidence of model data (Meijer & Sijtsma, 2001;
Sijtsma & Meijer, 1992). As with critical values for any coef-
ficient, the unique measurement context should inform item
and person selection criteria.

In addition to critical values, standard errors can also be
examined in order to aid in the interpretation of scalability
coefficients. Specifically, the mokken package for £ (van der
Ark, 2007, 2012) calculates asymptotic standard errors for
all three types of scalability coefficients (H, H;, H;;). Similar
to standard errors in other statistical contexts, these values
can be used to calculate confidence intervals (Kuijpers et al.,
2013) using the general form for a 95% confidence interval:
95%Cl = H; +1.96*se (H;). The mokken package also pro-
vides significance tests for scalability coefficients in the form
of Z tests whose values indicate the degree to which these co-
efficients are significantly different from zero (for additional
details, see Molenaar & Sijtsma, 2000, pp. 59-62; Sijtsma &
Molenaar, 2002, p. 40; van der Ark, 2007, 2012). Confidence
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Table 3. Joint Frequency Table for Two Polytomous Items

Item j
k=0 k=1 k=2 k=3 Marginal Frequency for Item i PX;=k

Item i k=0 3 0 0 0 3 1.00

k=1 4 7" 3 0 14 .98

k=2 10 22 34 3" 69 91

k=3 9' 17" 40 26 92 .52

Marginal Frequency 26 46 77 29 178

for Item j
P (X; = k) 1.00 .85 .60 .16

Note. Cells containing Guttman errors are indicated with an asterisk (*). These data are from Ligtvoet (2010, pp. 22-24).

intervals can be used to compare scalability coefficients to
other meaningful values, such as zero or Mokken’s (1971)
lower-bound criteria of .30. Confidence intervals can also be
used to compare scalability coefficients across person sub-
groups of interest. Specifically, separate MSA analyses are
needed in order to calculate values of A, /;;, or H within
each subgroup. Then, confidence intervals can be exam-
ined for each AO, AO pair, or overall set of AOs in order
to identify differences in scalability that may warrant further
investigation.

Scalability and automated item selection.  One of the ma-
jor uses of the scalability coefficient is to select sets of AOs
that demonstrate adherence to the assumptions of the MH
model. Mokken’s (1971) original presentation of his scaling
procedures includes a bottom-up method for selecting items
that meet the assumptions of the MH model. Computer appli-
cations that implement MSA have been developed to include
an automated item selection procedure (AISP) that identifies
sets of scalable items using H coefficients. Although the AISP
procedure has been applied as a technique for evaluating
dimensionality and selecting items in affective domains, the
use of this procedure for educational assessment items has
not been fully explored. As a result, it is not yet clear how au-
tomated item selection based on scalability coefficients apply
to this context.

Invariamt ordering. When considering the application of
MSA to educational achievement tests, it is important to
note that the implications of invariant ordering are somewhat
different than the implications in “traditional” MSA analyses.
Specifically, a consistent ordering of items or raters across
levels of student achievement could be a fairness concern that
must be supported with empirical evidence in order to inform
the interpretation and use of scores. Further, in educational
achievement contexts, the observed order of AO difficulty is
generally not compared to some a priori specification of the
expected ordering. Instead, evidence is simply needed that
the order is consistent for all students in the sample.
Methods for evaluating the invariant ordering assumption
in empirical data involve examining response functions for
evidence of nonintersection. Similar to the monotonicity as-
sumption, I1O can be evaluated for dichotomous AOs using
both graphical and statistical evidence. Several procedures
are available for evaluating I10 for dichotomous AOs, includ-
ing the restscore method, the item-splitting method, pro-
portion matrices (P++/P—— matrices), and the restscore-
splitting method (Sijtsma & Molenaar, 2002; van Schuur,
2011). For illustrative purposes, this module focuses on the
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use of the restscore method to illustrate the evaluation of
[10. Details about additional techniques for examining 110
are provided in Sijtsma and Molenaar (2002).

For dichotomous AOs, the graphical procedure for eval-
uating 110 based on the restscore method involves plotting
the probability for a correct response within a pair of AOs
as a function of restscore groups. Figure 6, Panels A and B,
illustrates this procedure for two dichotomous items. In this
figure, student restscores are plotted along the z-axis, and the
probability for a correct response is plotted along the y-axis.
[t is important to note that restscores are calculated as the to-
tal observed score (X ) minus the score on both items within
the item pair for which 110 is being evaluated. In Panel A, no
violations of I10 are observed for Item ¢ and Item j, because
the IRFs have the same relative ordering across the range of
restscores. On the other hand, Panel B illustrates two items
that do not demonstrate I10 because the relative order of Item
7 and Item j is reversed for the third restscore group (£ =
9-11), compared to the other three restscore groups.

As noted above, recent research on 110 based on the poly-
tomous DM model has highlighted the potential for a discrep-
ancy between nonintersecting ISRFs and I10, where noninter-
section at the level of rating scale categories does not always
imply invariant ordering when ISRFs are aggregated to the
overall item level. As a result, Ligtvoet et al. (2010, 2011) have
encouraged researchers to apply the MIIO method, in which
I10 is evaluated for overall items. The graphical procedure
for MIIO is illustrated in Figure 6, Panels C and D. In this
figure, student restscores are plotted along the z-axis, and
the average observed rating is plotted along the y-axis. In
Panel C, no violations of 110 are observed for Item ¢ and Item
J, because the IRFs have the same relative ordering across the
range of restscores. On the other hand, two violations of 110
are observed in Panel D, because the relative order of Item
7 and item £ is reversed for the middle two restscore groups
(R =117, 25] and R = [26, 36], respectively), compared to
the first and fourth restscore groups (£ = [0,16] and R =
[37, 4], respectively). Similar to the graphical procedures
for investigating monotonicity, it is also possible to plot Wald
confidence intervals around the estimated response functions
as additional evidence regarding the stability of the results
(van der Ark, 2013).

Statistical hypothesis tests based on the ¢ distribution (-
tests) for detecting significant violations of 110 are available
for both dichotomous and polytomous AOs. For a pair of items
ordered ¢ < j, the null hypothesis that the probability for a
correct response is equal across the two items is evaluated
against the alternative hypothesis that the item order is re-
versed (j < ¢), which would be a violation of 110. A similar
test is used for polytomous ratings. For example, if the overall
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FIGURE 6. Invariant ordering plots.

average ratings from Rater ¢ and Rater j can be ordered such
that X; < X; , a violation of this ordering is observed for a
particular restscore group » when this ordering is reversed,
such that (X;|R =r) > (X;|R =r) . The significance of
this violation can be examined by testing the null hypothesis
that the conditional mean ratings for the two raters are equal,
(X;|R =r) = (X;|R =r), against the alternative hypoth-
esis of the reversed severity ordering, which is a violation of
invariant ordering for raters.

Additional Mokken statistics. In addition to the indices of
monotonicity, scalability, and invariant ordering presented
above, it is important to note that methods based on MSA
can also be used to calculate additional statistics related
to an overall critical value for model violations (“Crit”; see
Molenaar & Sijtsma, 2000) and reliability analyses; both the
Crit statistic and Mokken reliability statistics result in single
coefficients whose interpretation has not been fully defined or
explored in the Mokken scaling literature in general (Meijer
et al., 2015), or within the context of Mokken analyses of
educational assessments. Rather than using these summary
level coefficients to evaluate measurement quality, indicators
of monotonicity, users of MSA in the context of educational
measurement are encouraged to examine results related to
scalability and invariant ordering at the level of individual
AOs.

Additionally, person-fit analyses can be conducted within
the framework of MSA by transposing the data matrix in Step
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1 of Figure 3. For brevity, the analyses in this module are
limited to AOs. Additional details regarding the use of MSA
for person-fit research are provided in Emons (2008), Meijer,
Muijtjens, and van der Vlueten (1996), and Meijer and Sijtsma
(2001).

Interpret Results Within Context

The third major step in the analytic procedure outlined in
Figure 3 is to interpret the results from the analysis of AOs
within the context of the educational assessment. As shown
in the figure, findings from the monotonicity, scalability, and
invariant-ordering analyses should be considered at the level
of individual AOs in terms of the unique context in which
the assessment is used. Essentially, the goal of this step is
to examine the results in terms of two main considerations:
(1) the practical implications of violations of the MSA model
requirements in terms of the intended interpretation and use
of the assessment and the consequences of the assessment;
and (2) opportunities for improving the quality of the AO in
subsequent iterations, which depend on practical considera-
tions, such as time and other resources, as well as the role
of the AQ’s content in terms of the alignment with standards
or objectives in the blueprint of test content. For example,
when violations of 110 are observed related to a particular
AO, these results should be considered in terms of the im-
portance of a common item ordering for the interpretation of
student scores, given the intended use and consequences of
the assessment. Second, the degree to which revisions to the
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item are possible in light of practical constraints should be
considered, along with the implications of removing or sub-
stantially revising the AO on the content coverage within the
assessment.

Modify AOs

The fourth step in the analytic procedure shown in Figure 3
is to modify the set of AOs. When it is possible to revise AOs
for which violations of monotonicity, scalability, and invariant
ordering were observed, these revisions should be informed
by best practices for assessment development and revision in
educational measurement, such as reviews by expert panels
of content experts and cognitive interviews (AERA, APA, &
NCME 2014; Lane, Raymond, Haladyna, & Downing, 2011).
Following revisions, the assessment will have to be readmin-
istered with the revisions before additional analyses can be
conducted. In the event that revisions are no longer possible
or warranted, the interpretation of results in Step 3 should in-
form the systematic removal and/or replacement of AOs from
the data matrix.

After the data matrix has been updated, additional itera-
tions of the analytic procedure should be conducted until an
appropriate set of AOs has been identified. The number of
iterations and the degree to which a set of AOs demonstrates
properties that are sufficient for operational use should be
determined based on the unique context of the educational
assessment system.

Illustrations: Applications in Educational Measurement

In the following sections, I illustrate the analytic procedure in
Figure 3 using two authentic examples of educational assess-
ments. The two examples were selected in order to demon-
strate the application of MSA across two commonly used
formats for educational assessments: dichotomously scored
MC items, and a writing assessment scored by human raters
using polytomous ratings. The procedures for both analyses
follow the same general steps, with some differences in the
interpretation of results when the dichotomous and polyto-
mous MSAmodels are applied. The data used in the examples,
along with R code for the analyses, can be accessed using the
link listed at the end of the module.

Ilustration 1: MC Assessment Items

In the first illustrative analysis, I demonstrate the application
of the four-step analytic procedure shown in Figure 3 to a set of
dichotomously scored MC items (Nitems=15) from a physical
science assessment that was administered to a sample of 268
middle school students. The physical science AOs were based
on concepts related to physical force, including net force
and interpreting force diagrams. Furthermore, an exploratory
analysis based on the AISP revealed that the items could
be described using a single Mokken scale—thus providing
evidence to support the assumption of unidimensionality.
The assessment was developed in conjunction with a
semester-long experimental science curriculum for middle
school students in the United States, and the assessment
data explored in this illustration were collected following the
initial implementation of the curriculum. The major purpose
of the first administration of the assessment was to explore
its psychometric properties, with the goal of revising the as-
sessment such that it could be used to inform instructional
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materials and teacher-training procedures related to the sci-
ence curriculum. Because the desired information from the
physical science assessment was related to the overall quality
of the assessment procedure in terms of fundamental mea-
surement properties, MSA was an appropriate analytic tool
for this assessment context. Additional details about the as-
sessment data are provided in Wind (2016).

Import the Data Matriz

In the context of the physical science assessment, the MC
items made up the AOs that were represented in the columns
of the data matrix. After the student responses to the MC items
were collected, they were scored dichotomously, such that a
score of zero indicated an incorrect response, and a score
of one indicated a correct response. For the purpose of this
illustration, the matrix of dichotomously scored responses to
the MC science items was imported into the mokken package
(van der Ark, 2007, 2012) for analysis.

Analyze AOs

Next, the AOs were evaluated using the three categories of
measurement quality indicators described above: (A) mono-
tonicity; (B) scalability; and (C) invariant ordering.

Momnotonicity. Results for the physical science MC items
revealed noviolations of monotonicity. However, inspection of
the IRFs used to evaluate monotonicity revealed differences
in the slope and shape of IRFs across the 15 items, with
some items demonstrating sharper areas of discrimination
for various achievement levels. Figure 7 illustrates the range
of shapes of IRFs that were observed among the MC items.
Because no violations of monotonicity were observed for the
MC items, these findings suggest that the relative ordering of
students in terms of the construct is consistent across the MC
items. In other words, this finding suggests that the relative
conclusions about the ordering of the middle school students
in terms of physical science knowledge are consistent across
all 15 items.

Scalability. The overall scalability coefficient for the 15
physical science items is # = .41 (SE' = .02). The 95% con-
fidence interval for this estimate (H + 1.96*SE(H) = [.37,
45]) ranges from a weak Mokken scale to a medium Mokken
scale. Individual item scalability coefficients (H;) and their
corresponding standard errors are given in Table 4. Exam-
ination of these coefficients reveals that the scalability of
each of the MC items was above Mokken’s (1971) minimum
value of H; = .30, and ranged from H; = .32 (SE = .04) for
Item 1, which was the least scalable item, to H; = .55 (SE =
.05) for Item 12, which was the most scalable item. No neg-
ative scalability coefficients were observed for the MC items.
Overall, these results suggest that some Guttman errors were
observed related to each of the assessment items examined
in this study, but that each of the MC items contributes to a
meaningful overall ordering of students in terms of physical
science knowledge.

Invariant ordering. The final step in the Mokken analy-
sis of the physical science MC items involves evaluating the
dichotomous DM model requirement for I10. Results from
I10 analyses of the MC items using the restscore method are
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FIGURE 7. Selected monotonicity plots for physical science items. Note. In each plot, the x-axis shows levels of student achievement
based on restscores, and the y-axis shows the probability for a correct response. The thick line shows the relationship between student
achievement and the probability for a correct response (the item response function), and the thin lines show the confidence interval around

the response function.

presentedin Table 4. For each item, the frequency of observed
and significant violations of 110 is presented. Overall, these
results suggest that there were very few significant violations
of [10 among the physical science assessment items. However,
one significant violation was observed for Item 3 and Item 10,
and two significant violations were observed for item pairs
involving Item 8. The implication of the finding of crossing
IRFs for these MC items is that the difficulty of items 3, 8, and
10 is not invariant across the range of student achievement.
In other words, this finding suggests that students with the
same total scores might have important differences in their
understanding of the physical science concepts assessed by
items 3, 8, and 10. As a result, these results do not support
a consistent interpretation of the difficulty order of physical
science items across the range of student achievement.
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Interpret Results Within Context

Because the physical science assessment was a low-stakes
classroom assessment administered during the first imple-
mentation of an experimental curriculum, the observed vari-
ations in item scalability and violations of invariant ordering
did not pose serious threats to the interpretation of student
achievement in terms of decisions about individual students.
Instead, these violations were used to identify MC items for
further investigation and revision. Specifically, Items 3, 8, and
10 were identified as potential candidates for revision.

Modify AOs

Based on the interpretation of results from the analysis of
the MC items, the fourth step involved revising the MC items

Educational Measurement: Issues and Practice



Table 4. Multiple-Choice Item Results
Item Scalability

Invariant Item Ordering
Count of Significant

Item H; SE Violations
1 .32 .04 0
2 43 .03 0
3 .40 .05 1
4 36 .04 0
5 41 .04 0
6 42 .04 0
7 43 03 0
8 42 05 2
9 44 03 0

10 49 05 1

11 .33 04 0

12 .55 05 0

13 44 03 0

14 42 04 0

15 .35 04 0

identified in Step 3, and administering the assessment again
during the next implementation of the curriculum in order
to obtain new data for analysis. Results from the subsequent
analysis revealed adequate fit to the MH and DM models for
the purposes of the assessment.

Ilustration 2: Rater-Mediated Assessment

In the second illustrative analysis, I illustrate the use of MSA
to evaluate measurement quality when polytomous ratings
are used. The key distinction between the analyses based
on polytomous MSA models from the analyses based on di-
chotomous MSA models used in Illustration 1 is related to
the evaluation of AOs at the level of rating scale categories
in addition to the evaluation of these model assumptions for
overall AOs.

The illustrative analysis demonstrates the application of
Molenaar’s (1982, 1997) polytomous MSA models to an as-
sessment in which human raters evaluated student essays in
terms of writing achievement. Specifically, 365 students com-
posed essays that were rated by a group of 20 raters in the
context of a rater training program prior to operational scor-
ing. Each rater scored each student’s composition in terms of
four domains: Conventions, Organization, Sentence Forma-
tion, and Style. Ratings were assigned using a four-category
rating scale (0 =low; 3 = high). The illustrative analysis pre-
sented here focuses on the Style ratings. Because the desired
information to be obtained from the rating procedure was
related to the overall quality of the ratings provided by each
rater in terms of fundamental measurement properties, MSA
was an appropriate analytic tool for this assessment context.
Additional details about these data, including results from
the other three domains, are provided in Wind and Engelhard
(2015).

When considering the results from MSA analyses of assess-
ment data based on a rater-mediated performance assess-
ment, it is important to note that the interpretation of the
results is not necessarily consistent with the interpretation of
MSA indices based on more traditional applications of this ap-
proach. In particular, rules of thumb for evaluating scalability
coefficients, along with statistics for statistical tests of mono-
tonicity and invariant ordering, have not been thoroughly
explored in the context of rater-mediated assessments.
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Import the Data Matriz

In order to apply the MSA models to the writing assessment
data, raters were treated as AOs. Specifically, the example
assessment data were structured with individual students as
rows and raters as columns. The cells in the matrix included
each rater’s polytomous rating of each student’s essay. This
approach is similar to the methods used to apply parametric
polytomous IRT models to ratings, including the Rasch model
(e.g., Engelhard, 1994; Wolfe & McVay, 2012). When the poly-
tomous MH and DM models are applied to raters, indicators of
measurement quality describe the degree to which individual
raters demonstrate useful measurement properties related to
monotonicity, scalability, and invariant ordering.

Analyze AOs

Next, the AOs were evaluated using indicators of: (A) mono-
tonicity; (B) scalability; and (C) invariant ordering.

Monotonicity. Evidence of monotonicity in the context of
a rater-mediated assessment suggests that a set of student
performances have the same relative ordering across a group
of raters, such that the interpretation of relative student
achievement does not depend on the particular rater who
scored a student’s performance. In order to evaluate mono-
tonicity for the 20 operational raters in the example data
set, overall rater response functions were examined for ev-
idence of nondecreasing average ratings across increasing
restscores. Further, ISRFs for individual raters were exam-
ined in order to evaluate the monotonicity assumption within
rating scale categories. Neither the graphical nor the sta-
tistical techniques revealed violations of monotonicity for
any of the 20 raters in the Style domain. Inspection of IRFs
and ISRF's for individual raters revealed differences in the
slope and shape of IRFs and ISRFs across the 20 raters, with
some raters demonstrating sharper areas of discrimination
and overall difficulty across levels of student achievement.
Figure 8§ illustrates some differences in the shape of IRFs
that were observed among the raters. However, the finding
of adherence to the MH model requirement of monotonicity
suggests that the relative conclusions about the ordering of
the middle school students in terms of writing achievement
are consistent across all 20 raters.

Scalability. Low values of rater scalability for individual
raters are of particular interest as an indicator of rating qual-
ity, because they indicate frequent Guttman errors that might
suggest idiosyncratic use of a set of rating scale categories.
The overall scalability coefficient for the group of 20 raters on
the Style domain indicated a strong Mokken scale (H = .77;
SE = .01). Values of individual rater scalability coefficients
are presented in Table 5. These results indicate that some
small differences exist in the relative frequency of Guttman
errors across the group of raters. The highest scalability co-
efficient was observed for Rater 8 (H; = .82, SE = .02), and
the lowest scalability coefficient was observed for Rater 6 and
Rater 20 (H; = .74, SE = .02). Further, results indicated
no negative rater pair scalability coefficients among the 20
raters. Taken together, these results indicate that student
total scores across the group of raters can be interpreted
as a meaningful indicator of student ordering in terms of
the construct. In other words, each of the raters contributed
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probability for a rating in a particular category (the item step response function), and the thin lines show the confidence interval around the

response functions.

to a meaningful order of the students in terms of writing
achievement.

Invariant ordering. Evidence for invariant rater ordering
(IRO) suggests that it is possible to interpret the relative
ordering of rater severity in the same way across levels of
student achievement. As I noted above, evidence of IRO is a
fairness issue that has implications for the interpretation of
rater-assigned scores. Specifically, evidence of IRO suggests
that rater severity can be interpreted the same way for all stu-
dents, and conclusions about the relative ordering of students
do not depend on the particular rater or raters who happened
to score their performance. Conversely, violations of IRO sug-
gest that the interpretation of student achievement ordering
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varies across raters, such that conclusions about individual
students depend on the raters who scored their performances.

Following Ligtvoet et al. (2010, 2011), I conducted IRO
analyses for overall raters, rather than within rating scale
categories. For each rater, Table 5 includes the frequency of
significant violations of IRO. Violations of IRO were observed
most frequently for Rater 15 (3 significant violations), fol-
lowed by Rater 16 (2 violations). One significant violation of
IRO was observed for Raters 7, 19, and 20. All of the other
raters demonstrated IRO. This finding suggests that Raters
7,19, and 20 may have a different interpretation of student
writing achievement than the other raters. As a result, these
results do not support a consistent interpretation of rater
severity across the range of student achievement.

Educational Measurement: Issues and Practice



Table 5. Rater-Mediated Assessment Results

Rater Scalability Invariant Rater Ordering

Count of Significant

Rater Hi; SE Violations
1 77 .02 0
2 76 .02 0
3 78 .02 0
4 77 .02 0
5 76 .02 0
6 74 .02 0
7 78 .02 1
8 82 .02 0
9 .78 .02 0

10 .78 02 0

11 .78 02 0

12 .78 02 0

13 .76 02 0

14 77 02 0

15 .78 02 3

16 .80 02 2

17 .75 02 0

18 .76 02 0

19 .78 02 1

20 74 02 1

Interpret Results Within Context

Because the writing assessment ratings were collected during
a rater training procedure, the observed variations in rater
scalability and violations of invariant ordering did not pose
serious threats to the interpretation of student achievement
in terms of decisions about individual students. Instead, these
violations were used to identify raters for further investigation
and potential retraining. Specifically, Raters 7, 19, and 20
could be identified as potential candidates for revision.

Modify AOs

Based on the interpretation of results from the analysis of
the raters, additional research and rater training procedures
could be targeted toward the three raters who demonstrated
misfit to the DM model in order to more fully understand their
idiosyncratic rating patterns and, if necessary, administer
additional training. Alternatively, if retraining is not possible,
it may be necessary to remove these three raters from the
pool of operational raters.

Summary

In this module, I provided an introduction to MSA as a
probabilistic-nonparametric approach to exploring the qual-
ity of measurement procedures in the social sciences. I em-
phasized the usefulness of MSA for exploring measurement
quality in the context of educational measurement using ex-
amples from a MC science assessment and a rater-mediated
writing assessment. Further, I presented three categories of
Mokken-based indicators and displays as a systematic tech-
nique for evaluating fundamental measurement properties
for dichotomous and polytomous AOs: (A) monotonicity, (B)
scalability, and (C) invariant ordering.

Although a variety of sophisticated parametric techniques
exist that can be applied to the types of educational assess-
ment data discussed in this module, the Mokken approach
illustrated here should be recognized as an additional tool
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that can be used to explore fundamental measurement prop-
erties. In particular, the procedures illustrated in this module
can be used to explore measurement quality in contexts in
which an ordinal scale of measurement is sufficient to inform
decisions based on assessment results, when sample sizes are
not sufficient for the application of parametric models, and as
an exploratory technique used in combination with paramet-
ric procedures. A major benefit of this approach is that, when
there is evidence of adherence to the MH model, it is possible
to interpret total scores as an indicator of student ordering
on the latent variable. Likewise, evidence of adherence to the
DM model supports a common interpretation of AO ordering
across the range of student achievement.

Another major benefit is the diagnostic nature of the graph-
ical displays, which provide researchers with a valuable tool
for examining the underlying properties of items or raters
that go beyond the summary-level item or rater fit statistics
that are often explored in the context of parametric IRT.
Summarizing this perspective, Meijer et al. (2015) observed:
“there seems to be a great reluctance by especially trained
psychometricians to use graphs. We often see fit statistics and
large tables full of numbers that certainly do not provide more
information than graphs” (p. 89). Furthermore, when statis-
tics and displays based on MSA are examined in combination
with parametric techniques, the nonparametric indices have
frequently been shown to reveal additional diagnostic infor-
mation regarding the location of model-data misfit that are
not evident based on parametric models (Sijtsma & Meijer,
2007; Wind, 2014, 2016)—thus, providing a more complete
summary of the data than what would be obtained based on a
single approach.

Asnoted above, it is essential that researchers consider the
unique characteristics of the assessment context when inter-
preting results from an application of MSA to educational
achievement test data. Because these procedures were origi-
nally developed for use with affective measures, the interpre-
tation of traditionally used rules of thumb and critical values
may not translate directly to educational tests—especially
when raters are involved. Additional research is needed in
order to provide additional insight into the interpretation
of these rules of thumb and critical values for educational
achievement tests in general, including rater-mediated as-
sessments.

The current illustrative analyses should encourage re-
searchers to consider the use of nonparametric procedures
based on Mokken scaling as a systematic approach for evalu-
ating the quality of educational assessment, particularly when
invariant measurement is of interest.

Data for Illustrative Analyses

The data used in the illustrative analyses, along with R
code for implementing the analyses, are available at this
link: https:/gitlab.com/stefaniewind/Mokken_ITEMS/tree/
master

Self-Test

1. Describe the major differences between the monotone
homogeneity and double monotonicity models in terms
of their underlying requirements.

2. Describe how the monotone homogeneity and dou-
ble monotonicity model assumptions relate to the
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requirements for invariant measurement: (a) persons
are ordered the same way across items; (b) items are
ordered the same way across persons.

3. A researcher discovers nonintersecting ISRFs within a
pair of polytomous items. Does this implyfit to the double
monotonicity model? Why or why not?

4. Calculate the item pair scalability coefficient for the
dichotomous item pair (7, j) using the following joint

frequency table:
Itemj=0 Itemj=1 Total
Itemi=0 41 41 82
Itemi=1 27 159 186
Total 68 200 268

5. Describe violations of monotonicity for dichotomous and
polytomous assessment opportunities.

6. Describe the relationship between the number of
Guttman errors associated with an assessment oppor-
tunity and scalability for that assessment opportunity.

7. Using the data and R code for the illustrative analyses,
calculate numeric and graphical indicators of mono-
tonicity, scalability, and invariant ordering. Check your
work against the results shown in the module.

Answers to Self-Test

1. The monotone homogeneity (MH) and double mono-
tonicity (DM) models share three common underlying
assumptions: monotonicity, unidimensionality, and lo-
cal independence. The DM model is more restrictive in
that it also includes a fourth assumption: invariant item
ordering.

2. When data fit the MH model, there is evidence that
persons are ordered the same way across items (a).
When data fit the DM model, there is evidence that
items are ordered the same way across persons (b).

3. No. As pointed out by Ligtvoet et al. (2010, 2011), there
is an aggregation phenomenon that is sometimes ob-
served for polytomous items, where nonintersecting IS-
RFsdonot always aggregate to nonintersecting IRFs, and
vice versa. Accordingly, additional checks are necessary
in order to ensure that the aggregation phenomenon
does not affect the conclusion of adherence to the DM
model.

4. H; = 428. This value can be calculated using the ob-
served and expected ratio method as follows:

e [Inspection of the marginal frequencies for the two items
reveals that Item ¢ (total correct = 186) is more difficult
than Itemj (total correct = 200), so the item difficulty
ordering is7 < j.

e (Guttman errors are defined as combinations of a cor-
rect response to Item 4 and an incorrect response to
Item j; the cell (X(;;) = 1,0). The frequency of observed
Guttman errors is 27.

e The expected frequency of Guttman errors is: [ (Row
total * Column total)/N] = [ (186 * 68)/268)] = 47.19.

o Scalability for the item pair is calculated as: H;; =1 —

21— 498,

719
5. For assessment opportunities with dichotomous

scores, a violation of monotonicity occurs when the
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probability for a correct response is higher among stu-
dents with lower restscores (i.e., lower achievement)
than it is among students with higher restscores. For
assessment opportunities with polytomous scores, a vio-
lation of monotonicity occurs when the probability for a
rating in category & or higher is higher among students
with lower restscores than it is among students with
higher restscores. When the assumption of monotonic-
ity is violated, students are not ordered the same way
across assessment opportunities.

6. Asthe number of Guttman errors increases, the value of
the scalability coefficient decreases.

7. Please compare your results for [llustration 1 to Table 4
and Figure 7, and your results for Illustration 2 to Table
b and Figure 8.

List of Selected Introductory Texts on Mokken Scaling

Conceptual overviews:
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parametric item response theory (Vol. 5). Thousand Oaks,
CA: Sage.
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