ITEMS Digital Module 06: Posterior Predictive Model Checking

This document contains all core content slides from sections 1-3 with the
exception of slides that show video screens. In the digital module all
slides can be accessed individually.

Module Organization

The module starts with an introductory section that leads to the main menu

from which learners can select individual content and activity sections:

g1 Conceptual Foundations Dalas jassion

[20 Minutes] vilnutes]
A .

02 Simple Linear Regression Data Acti IRT
~  [20 Minutes] [20 Minutes)
N =

Theory
adpedd

03 Item Response Theory

\ [40 Minutes] / \

This handout contains only the slides from the
first three content sections.

o,
06 [10 Minutes)

—
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DMO06 HANDOUT Version

1. Module Overview

1.1 Module Cover

N(IME
ITEMS Module

Bayesian Statistics:

Posterior Predictive
Model Checking

Version 1.0
- HANDOUT -
April 24,2019

Content Team Design Team

Randall Penfield

Click on the images to get to know them a little bit!
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1.3 Design Team

Meet the instructional design team:

Click on the images to get to know them a little bit!

1.4 Support Team

Ers I NCM
. THANK YOU | 7 l

1

..for supporting this project through staff time and other resources!
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1.5 Welcome

Welcome to the
ITEMS Module!

The woman to the left is Laura!

Along with the content developers
she will be guiding you through the
module content.

Please type your name
in the text box below:

Hello %TextEntry1%! In this module you will learn about
Thank you for your interest in posterior predictive model
this ITEMS module! 3 checking (PPMC) and its use for

evaluating model-data fit.

e conceptual L | You can navigate freely through

The module has thre
sections, two applied example the sections but we recommend
sections, various quiz questions, taking them in sequence for the
and additional resources. / best learning experience.
E—

/A |
In the player menu the slides

for all sections can be accessed B T LR e

S i started and look at the audience
individually along with resources

description!
and a glossary. e

' \
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1.7 Target Audience

Target Audience

Anyone who would like a gentle statistical introduction to this topic:

/ + graduate students and faculty in Master’s, Ph.D., or certificate programs \

+ psychometricians and other measurement professionals

+ data scientists / analysts

+ research assistants or research scientists

« technical project directors

V assessment developers )

However, we hope that you find the information in this module useful no matter
what your official title or role in an organization is!

1.8 Expecations (1)

Let’'s discuss expectations....
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Learning Objectives

1.9 Expectations (1)

ITEMS Modules in Context

Chageman & Hal/CAC
Satatcn n e Social ared Behavioral Scionces Serien

Bayesian
Psychometric

f Philosophy (Ph.D.)

e Coreer Opportusses o Brogem Comser @ Rppy
e, ri

— A8 s S et

Roy Levy = Robert J. Mislevy

1.10 Learning Objectives

il Explain the scientific rationale behind posterior predictive model checking (PPMC)
L Describe the general computational procedures for PPMC
Interpret graphical and statistical output to evaluate the linearity and constant
variance assumptions of a simple linear regression model using PPMC
s Interpret graphical and statistical output to evaluate key fit assumptions for a
* unidimensional IRT model using PPMC
5 Apply the PPMC approach for simple linear regression and unidimensional IRT
" using commonly available statistical software
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1.11 Prerequisites

(- Working knowledge of foundational measurement concepts: \

Construct definitions / latent variables
Assessment formats

Item / task types

Scales and scale scores

Basic aspects of assessment development

* Working knowledge of foundational statistical concepts:
v' Descriptive statistics for distributions

S

\

v Simple linear regression model
v’ Statistical inference with p-values

\.

1.12 Resources

@

elected free materials are
in the ‘Resource’ section of
the player interface.

Links to purchase key
reference books on Amazon
are provided via the button

K below. )

Reference
Books
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Resources 1 (Slide Layer)

Resources: Books

McElreath, R. (2016). Statistical rethinking: A Bayesian Course
with R and Stan.

Kaplan, D. (2014). Bayesian statistics for the social sciences.

More Back to
Books Main Slide

Resources 2 (Slide Layer)

Resources: Books

Lewy, R., & Mislewvy, R. (2016). Bayesian
psychometric modeling.

Jackman, S. (2009). Bayesian analysis for
the social sciences.

Back to Back to
Other Books Main Slide
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1.13 Main Menu

p

Datagh jassion
Vilnutes]
. 9
Data Acti IRT
[20 Minutes]
T

Conceptual Foundations

01 ]
[20 Minutes]

adleld

02 Simple Linear Regression

< [20 Minutes]

Theory

Item Response Theory

[40 Minutes] / [10 Minutes] /

03

A

This handout contains only the slides from the
first three content sections.

—

2. Conceptual Foundations

2.1 Cover: Foundations

Section 1:

Conceptual
! Foundations
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2.2 Objectives: Foundations

Learning Objectives

r D

1, Compare and contrast Bayesian
inference with maximum likelihood

\. J

2 List and describe key steps in the
application of Bayesian inference

r D

a List and describe key steps of Posterior
Predictive Model Checking (PPMC)

Describe the computational logic
underlying PPMC procedures

. >

2.3 Motivation

Why Learn about PPMC?

Bayesian estimation for item response theory (IRT) modeling anc

[ other complex models has been

increasing rapidly

Bayesian approach to assessing model-data fit:

[ * Posterior predictive model checking (PPMC) is a prominent

)
)

» Simple

¥ Flexible

» Sound

» Consistent
» Intuitive
» Powerful

v 13 o i i s
Theers Ve L & Barian Appeeach

(Sinharay, 2005)
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2.4 Sample Context

Sample Context
/In this section we will show\

you how to: . Discrepancy Measure: Item-Tatal Carrelation

» Apply the PPMC method to 07
two common modeling
approaches (SLR, IRT)

Itena-Total Correlation

» Display the PPMC results o3
using useful graphics

» Adapt the flexible PPMC o p
method to your own research e

\scenario j

2.5 Topic Selection

Theoretical Computational
Framework Approach
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2.6 Bookmark: Theoretical Framework

Theoretical
Framework

2.7 Overview: Model Fit

Overview: Model Fit
Statistical models are simplified J
approximations to the B
complexities underlying real data ‘h-_,
sets that help to tell empirical ’
‘4
L - \ G

stories about learners and tasks

Drawing valid inferences from
! data through statistical

models requires a good fit of
the data to the model
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2.8 Overview: Model Fit

Overview: Model Fit

We may wish to ask questions such as:

What aspects of the observed data are not captured by my model?

Are the aspects not captured by the model critical for my inferences?

Y ¥V ¥

Are there ways that I can refine my model in order to improve fit?

A\

Do | have the statistics available that help assess all critical aspects?

v

How much do my prior beliefs influence my interpretations?

Answering these questions is the foundation of Posterior Predictive
Model Checking (PPMC), the Bayesian approach to model-data fit.

2.9 Consequences of Misfit (1)

Overview: Consequences of Misfit

Consequences of model-data misfit specific to linear regression:

* Biased regression parameters
*Incorrect and imprecise predictions for the outcome variable

* Misinterpretations about substantive relationships
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2.10 Consequences of Misfit (Il)

Overview: Consequences of Misfit

Consequences of model-data misfit specific to item response theory:

* Biased person parameter estimates
* Biased item parameter estimates

* Incorrect ranking of individuals
*Incorrectly equated test scores

= Misinterpretations about latent traits or abilities

Prababilty of a Comeet Raspanse
0.5
1
‘
|
N
\\

2.11 Overview: Inferential Frameworks

Overview: Inferential Frameworks

PPMC is a broad analytic framework for evaluating model-data fit
from a Bayesian perspective

Maximum Likelihood Inference Bayesian Inference

Likelihood Likelihood

Data Data

Prior Distributions

Single most likely value of Posterior Distributions
parameter (point estimate)

Distribution of plausible
parameter values (posterior)
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2.12 Overview: Bayes Theorem

Overview: Bayes’ Thearem

Prior
Distribution

v \’

P(Data|Parameters)P (Parameters)

Likelihood

P(Parameters|Data) =

T P(Data)
Posterior 1\
Distribution Normalization
Constant

2.13 Bookmark: Posterior

. Posterior
) Distribution p_¢

L=
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2.14 Posterior Distributions

Posterior Distributions

Posterior distributions represent an analyst’s belief about likely
parameter values after collecting data and combining data-drive
evidence with the a priori beliefs from the prior distribution

Analytic Solutions

 Via Bayes theorem

Markov Chain Monte Carlo (MCMC)

* Simulation-based approach

* Involve complicated mathematics * Involves “auditioning” values

* Only available for certain models * Creates collection of plausible values

wikipedia Page ITEMS Module
for MCMC on MCMC

Machine Learning
Paper on MCMC

2.15 Example Selection

Example 1: Example 2:

Example 3:

Moderately
Informative Prior

Highly
Informative Prior

Informational Value

Weak Prior
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2.16 Posterior Example (1)

o
e w @
w ot s

[
[
)
Y]
£
el
[~
(1]
o
e
(=}
>
s
o
m
o
[=}
=
o

o
-

1
Parameter Value

—Likelihood —Informative Prior —Posterior

Strong prior information pulls the posterior close to the prior

2.17 Posterior Example (1)

o
-

Probability of Parameter

o
o
o

o

-2 -1 0 1 2
Parameter Value

—Likelihood —Weakly Informative Prior —Posterior

Weaker prior informaticon pulls the posterior close te the likelihood
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2.18 Bookmark: Likelihood

) N likelihood ._) o

2.19 Likelihood (1)

Likelihood

Expression of the joint probability of observing the data under a given
model using the mathematical structure of the model

Maximum Likelihood Inference Bayesian Inference

Determines the single most-likely value of Creates a distribution of plausible values,
the model parameter(s) for the data one for each model parameter

Likelihood is combined with prior

Likelihood completely drives inference distribution to make posterior inference

Given parameter values for a model,
how well do those values explain / predict the observed data?

DMO06: PPMC
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2.20 Likelihood (1)

Probability Density Functions

[- Probability density function (PDF): defines the relationship between a ]

set of scores and the probability of observing each score

Example of
Normal Distribution

= Likelihood: joint probability over all data points for a particular PDF - how
likely it is to observe the entire data set is given the PDF parameters

Example (Slide Layer)

Normal Distribution Example

Substituting a value of x; into the normal distribution PDF gives the
prabability (likelihood) of observing this value given a particular
combination of mean (i) and standard deviation {¢} parameters.

Different parameter values or different distributions would yield

different probabilities for x,

Back to
Main Slide
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2.21 Bookmark: Prior

4
K 7 .
) Prior » N’
\ el £ )

2.22 Prior Distributions (1)

Prior Distributions

Prior distributions represent an analyst’s belief about likely
parameter values before collecting any data

Normal
015
01
. Mean
Key Choices 005 ﬂ
]
Family E ] -6 - -2 o 2 4 L 1]
Location
Precision
Beta

6 - M ow B @ @
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2.23 Prior Distributions (1)

| Prior Distributions

Prior distributions represent an analyst’s belief abou
parameter values before collecting any data

Noninformative (Imprecise) Informative (Precise)
* Little to no prior knowledge * More specific beliefs about the likelihood
« Each value of the parameter is of certain parameter values
equally probable in extreme case « Different distributional shapes can be used

to capture belief structure

2.24 Prior Distributions (lll)

Normal(0.5, sd=0.25)

0.15

0.1

Probability of Parameter

0.05 Uniform

. /

0
Parameter Value

==Noninformative Prior ==|nformative Prior
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2.25 Bookmark: Normalization

K ¢ B 4

‘Normalization S 4

) Constant e
et

L=

2.26 Normalization Constant

Normalization Constant

Normalizing constant: a scaling factor in the denominator or the posterior
that is used to ensure the posterior distribution is a proper distribution
(i.e., the area under the distribution must equal ‘1)

P(Parameters|Data) « P(Data|Parameters)P(Parameters)

Normal Distribution Example:

is the normalization constant for the posterior.
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2.27 Bookend: Theoretical Framework

This is the end of this section.

2.28 Bookmark: Computational Approach

Computational
Approach
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2.29 Posterior Predictive Distributions

PPMC: Posterior Predictive Distributions (PPDs)

PPMC is used to check for model-data fit before making parameter inferences:

* Highlight violation of model assumptions

* Illuminate features of observed data that the model fails to capture

Posterior predictive distribution (PPD) are used for this purpose:

* Conditional upon the model being evaluated

* Multiple predicted data sets are simulated to reflect the full range of
plausible parameter values

* Observed model-fit statistics for data are compared to distributions of model-

fit statistics from predicted data sets

2.30 Model-fit Logic

PPMC: Model-fit Logic

If the model fits the observed data, then

the PPD sets will resemble the

observed data

The PPD captures important

features of the data

If the model does not fit the observed
data, then the PPD sets will not
resemble the observed data
The PPD does not capture important

features of the data
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2.31 Evaluation Procedures

PPMC: Evaluation Approaches

ﬁ Fit Statistics (Discrepancy Measures)

* Indices that highlight a feature of the data that is important to the analyst /
researcher / practitioner

* Selected or developed from model assumptions or substantive
considerations / interpretations

* Computed for the observed data (one value) and the PPD sets (as many

N

v Inferential Procedures (Posterior Predictive p-values [PPPs])

* Related to the number of simulated data sets that produce fit statistics that
are different from the observed one

* Large or small values are used to flag model-data misfit

k values as there are simulated data sets) )

v

v' Graphical Displays

2.32 Discrepancy Measures

PPMC: Discrepancy Measures

Linear Regression

* Linearity: Scatterplots, descriptive statistics
* Independence: Autocorrelation statistics

* Homoscedasticity: Breusch-Pagan statistic

Item Response Theory

« Monotonicity: Conditional residual plots
« Dimensionality: Factor-analytic methods, DIMTEST, odds ratio
«  Complexity: Information indices, LR test

25/85

Core Slides



2.33 Computational Steps

PPMC: Computational Steps

1. Sample randomly a single value for each model parameter from the associated posterior
distribution

2. Simulate one posterior predictive data set using the random parameter draw(s) and the

statistical model structure
3. Compute the discrepancy measure for the predicted and the observed data sets

4. Compare the two values of the discrepancy measure and record whether the predicted

value is larger

5. Repeat steps 1-4 a large number of times (e.g., 1,000 times or 10,000 times)

6. Tabulate how often the value of the predicted discrepancy measure was larger than the

corresponding value for the observed data (posterior predictive p-value)

7. Interpret the resulting percentage to make a judgment about model fit to suggest model

modification or replacement

2.34 Data Examples

Data Examples

There are two extended examples in this digital module that you can
access from the main menu or the final slide in this section:

* Simple linear regression _[[H]_
* Item response theory [_Gl @

The general steps for Bayesian inference and PPMC are the same but
the statistical model and associated discrepancy measures vary!
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2.35 Bookend: Computational Approach

This is the end of this section.

2.36 Posterior Example (1)

Probability of Parameter

e

-1 0 2
Parameter Value

—Likelihood —Noninformative Prior —Posterior

The posterior is the same as the likelihood
if there is no prior information
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3. Simple Linear Regression

3.1 Cover: Regression

Section 2:

Simple Linear
Regression

3.2 Learning Objectives: Regression

Learning Objectives

4 Y )
1 Describe the basic assumptions of Identify discrepancy measures that
" asimple linear regression model 2. can be used to evaluate the basic
model assumptions
J
r Y 2
Describe the basic computational Describe the rationale for making
3. steps for evaluating the basic 4. adjustments to the regression
model assumptions model based on the evaluations
N .
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3.3 Model-data Fit (111)

Recap: Model-data Fit

Adequate model-data fit:

*Model-predicted data should be
similar to most observed

data points

*Difference between the observed
data and predicted data should be

small

Poor model-data fit:

*Model-predicted data will be
different from some observed data

points

*Difference between the observed
data and predicted data will be

large

3.4 Example: Overview

Statistical Model: Structure & Assumptions

@Hsﬂcal Model:

Model Parameters:
* Intercept (a)

* Slope (b)

Asssumptions:
« Linearity

* Homoscedasticity

+ Independence

Simple linear regression model of the form Y = a+bX

J

29/85
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Regression Formula (Slide Layer)

Regression Formula

/ Structure

Yi=a+in—!—Ei

= Al i

n = number of observations

/ Assumptions

E;~Normal(0, 6?)

Error are mutually independent and
identically normally distributed with
a constant variance

Back to
Main Slide

3.5 Regression Example (1)

Statistical Model: Example Data

* Mean of the Normal distribution, ;. is specified as a linear function of the predictor variable

and parameters of interest:

weight;~Normal(y;, )
#; = a+ b » height;

weight;~Normal(a + b * height;, %)

* weight; is the dependent variable (outcome) for the {*® individual (i = 1,2, ... ,n}

* height; is the independent variable (predictor) for the it individua

« g is the intercept
+ b is the slope

+ g2 is the variance (spread) of the data

30/85
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PPMC

3.6 Regression Example (1)

A quadratic
function is more
appropriate, but

to illustrate the

concept of
PPMC, first fit a
simple linear
regression
model.

100 125
height

» waight Regression

Clear non-linear relationship:

Model misfit under a

linear association model expected!

3.7 Regression Example (l111)

Statistical Model: Prior Specification

Model

weight;~Normal(a + b + height;, a?) ‘

* a~Normal(45,sd = 100)

* b~Uniform(0,10)
+ g~Uniform(0,50)

il

Priors

G

Convergence assessed via trace plots and formal statistical tests (i.e., Geweke's diagnostic)

31/85
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3.8 Regression Example (IV)

Statistical Model: Posterior Distributions

Posterior Summaries and Intervals
Parameter N Mean  Standard 95% HPD Interval
Deviation
a 50000  43.80 0.25 43.30 44.27
b 50000 0.50 0.01 0.49 0.52
s 50000 5.00 0.15 470 531

Diag a (Slide Layer)

Convergence Diagnostics: Intercept

Diagnostics for a

o 10000 20000 30000 40000 50000
Reration

Autacormslation
. s & =
o
-~
™
.y
-
o

Postenor Densty

Back to
Main Slide
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Diag b (Slide Layer)

Convergence Diagnostics: Slope

Diagnostics for b

0.50
0.48
U] 10000 20000 30000 40000 50000
Reration
10 N\
/ \'\
= 05 & / \
2 H /
B 3 / \
B ;
g B / \
g s
g g / \
< 05 F-d / \
1.0 — / S—
0 10 20 30 40 50 0.48 050 052 0.54
Lag b

Back to
Main Slide

Diag s (Slide Layer)

Convergence Diagnostics: Standard Deviation

Diagnostics for s

55
«
50
45
[] 10000 20000 30000 40000 50000
Iteration
10 /\
= 05 & / \
2 | £ \
B 3 /
Y] 5 \
H 5 / \
5 B / \
< 05 Ed / \
1.0
0 10 20 30 40 50 45 50 55
Lag s

Back to
Main Slide
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3.9 PPMC: Computational Steps (1)

PPMC: Note on Software

Software options:

o |

=  PPMC is not built in to many of these programs
= Knowledge of the programming language is required

= We have provided sample SAS code for your use

3.10 Topic Selection

Homoscedasticity

34/85
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3.11 Bookmark: Linearity

Linearity
Assumption

3.12 Untitled Slide

Example: Overview

Violations of the linearity assumption are serious:
Your predictions will have considerable error!

( Models should capture the entire range of the data

> Misfit due to non-linearity may occur in specific regions, such as the
high or low regions of the distribution

» The predicted mean, minimum, and maximum will help determine
whether the model’s linearity assumption is adequate for the entire
\ range of the data

\
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3.13 Example: Overview

Example: Overview
ﬁalvﬁc Goal: \

Determine whether the model assumption of
linearity is being met

-> linear association between Xand Y

Discrepancy Measures:

Mean, standard deviation, minimum, maximum

Description:

Descriptive summary measures with different
properties can help evaluate whether the model
ngod fit for the entire range of the data

Regression Formula (Slide Layer)

Regression
Formula

Regression Formula

/ Structure

/ Assumptions

—a thX; FE E;~Normal(0, c#)

Errer are mutually independent and
identically normally distributed with
a constant variance

=R

n = number of observations

Wikipedia Back to
Page Main Slide
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3.14 PPMC: Computational Steps (1)

PPMC: Computational Steps

In simple terms, after estimating the posterior distributions:

- compute the discrepancy measure for the single observed data set

- compute the discrepancy measure for each predicted data set

\

- compare the observed value and the distribution of predicted values

- make a decision about model-data fit based on the selected measure)

The next slide shows the computational steps in more detail.

3.15 PPMC: Computational Steps (ll)

PPMC: Computational Steps

1. Sample randomly a single value for each model parameter from the associated posterior

distribution

2. Simulate one posterior predictive data set using the random parameter draw(s) and the

statistical model structure

3. Compute the discrepancy measure for the predicted and the observed data sets

4. Compare the two values of the discrepancy measure and record whether the predicted

value is larger

5. Repeat steps 1-4 a large number of times (e.g., 1,000 times or 10,000 times)

6. Tabulate how often the value of the predicted discrepancy measure was larger than the

corresponding value for the observed data (posterior predictive p-value)

7. Interpret the resulting percentage to make a judgment about model fit to suggest model

modification or replacement
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3.16 Bookend: Linearity

This is the end of this part.

3.17 Bookmark: Homoscedasticity

Homoscedasticity
Assumption
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3.18 Example: Overview

Motivating Example: Overview

@vﬁc Goal:

Determine whether the model assumption of

homoscedasticity (equal error variance) is being met

Discrepancy Measure:

Breusch-Pagan statistic

Description:

+ The Breusch-Pagan test regresses the squared

residuals on the independent variables. Breusch-Pagan
*  With homoscedasticity this regression should NOT Formula

explain the variation in the squared residuals. 8
Regression
Formula

Regression Formula (Slide Layer)

Regression Formula

/ Structure

/ Assumptions

—a thX; FE E;~Normal(0, c#)

Errer are mutually independent and
identically normally distributed with
a constant variance

=R

n = number of observations

Wikipedia Back to
Page Main Slide
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Breusch-Pagan Formula (Slide Layer)

Breusch-Pagan Statistic
Regrassion Model l weight; = a + b = height; + ¢; l

Error Regression e,2 = agp + bgp * height; + ejgp

Breusch-Pagan Statistic

RZ s the coefficiant of determination {squared multiple correlation) from the
regressicn of the independent variakles on the squared residuals

Small Value #=2 varlances are likely to be all equal (homoscedasticity)

Large Value === varlances are |Ikely to be NOT all equal (heteroscedasticity)

Wikipedia Back to
Page Main Slide

3.19 PPMC: Computational Steps (1)

PPMC: Computational Steps

In simple terms, after estimating the posterior distributions:

\

- compute the discrepancy measure for the single observed data set
- compute the discrepancy measure for each predicted data set

- compare the observed value and the distribution of predicted values

- make a decision about model-data fit based on the selected measuD

The next slide shows the computational steps in more detail.
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3.20 PPMC: Computational Steps (1)

PPMC: Computational Steps

1. Sample randomly a single value for each model parameter from the associated posterior
distribution

2. Simulate one posterior predictive data set using the random parameter draw(s) and the
statistical model structure
3. Compute the discrepancy measure for the predicted and the observed data sets

4. Compare the two values of the discrepancy measure and record whether the predicted

value is larger

5. Repeat steps 1-4 a large number of times (e.g., 1,000 times or 10,000 times)

6. Tabulate how often the value of the predicted discrepancy measure was larger than the

corresponding value for the observed data (posterior predictive p-value)

7. Interpret the resulting percentage to make a judgment about model fit to suggest model

modification or replacement

3.21 Bookend: Homoscedasticity

This is the end of this part.
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3.22 Bookmark: Summary

Section
Summary

3.23 Summary

Using the linear regression model for our data,
PPMC indicated:

» model-data misfit at the lower end of the distribution
(ppp < .05 for minimum)

» aviolation of the homoscedasticity assumption
(ppp < .05 for Breusch-Pagan statistic)
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3.24 Other Models: Structure

Other Models: Structure

welght

height

-
150

[ Guiratic Function s Cubsc Funclion @ waight |

s

weight = a + by » height + by » height?

weight = a + by » height + b, « height? + by = height®

Other Models: PPMC Values

3.25 Other Models: PPMC Values

Discrepancy Statistic

540 479 480

Mean
[ Minimum <.001 249 456 ]
Maximum 678 .900 .860
Standard Deviation 770 ABD .540
l Breusch-Pagan .040 049 023 ]

[

Quadratic and cubic models fit the lower range better

but still have problems of heteroscedasticity!

)
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3.26 Other Models: Conclusions

Other Models: Conclusions

These models are a better fit to data at the lower end of the
distribution than the simple linear model

Homoscedasticity
» The ppp values for the Breush-Pagan statistic are below .05 for the
linear, quadratic, and cubic models
» The issue of heteroscedasticity has not been solved by use of the
quadratic or cubic model

Linearity
» The ppp values for the minimum are .249 and .456 for the quadratic
and cubic models
=

3.27 Summary

Final Recommendation

Goosing the appropriate statistic matteD /

» The mean as a discrepancy statistic would
not highlight the data’s heteroscedasticity

% The Breusch-Pagan test as discrepancy
statistic does not indicate violations of the
independence assumption

Regardless of the discrepancy statistic or

kmodel, the PPMC process is Identical.j
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3.28 Bookend: Regression

This is the end of this section.

4. Iltem Response Theory

4.1 Cover: IRT

Section 3:

Item
Response

Theory

DMO06: PPMC
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4.2 Objectives: IRT

Learning Objectives

Describe the basic assumptions of a 2 Identify discrepancy measures that
unidimensional IRT model help evaluate IRT model assumptions
3. Describe the basic computational Interpret visual summaries of the
steps to evaluate the assumptions discrepancy measures to make
decisions about model fit

4.3 IRT Models (1)

Item Response Theory

o )

= A family of statistical models commonly used in large-scale testing

= Parameters for respondents and items are placed on common scales

= Response probabilities depend upon a respondent’s latent trait and
the item characteristics via model parameters

* Respondents with a higher value on the latent trait will have a
higher probability of responding correctly to items and vice versa

_— —
e

= One popular method of estimating the item and respondent
parameters is Bayesian inference; the other is maximum likelihood

Wikipedia Refresher
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4.4 IRT Models (1)

Item-Response Function (IRF)

Probability for
a certain kind
of response

IRT models are classified

based on assumptions or

requirements about this
relationship

>

J Location on the construct variable

Examples (Slide Layer)

Probability of Carrect Response

DMO06: PPMC
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4.5 Parametric Item Response Theory

' Model Types

4 )
* The functional relationship between the probability for a response and the latent
trait is the item response function (IRF)

\ <

* Two common choices for the IRF are the logistic and the probit function

* Depending on the model that is chosen, different item parameters are
available to influence the shape of the function within and across items:

\ W
( \
¥ One-parameter / Rasch model: Difficulty
¥" Two-parameter model: Difficulty, Discrimination
v Three-parameter model: Difficulty, Discrimination, Guessing
.

One-parameter Two-parameter Three-parameter

/ Rasch Model Model Model

4.6 One-parameter Model

| One-parameter Logistic (1PL) / Rasch Model

Difficulty \

Parameter

w o exp (a(&'i - b}-))
T exp (a(ﬂi = bj))

Probability of a Correct ResponA
1.0

0.0

E T T T T T T T bl
Variable
3 2 1 0 1 2 3 /

\ e Rasch model:a=1

One-parameter Two-parameter Three-parameter
/ Rasch Model Model Model
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4.7 Two-parameter Model

| Two-parameter Logistic (2PL) Model

| Three-parameter Logistic (3PL) Model

Probability of a Correct Response\

One-parameter

/ Rasch Model

Two-parameter
Model

Difficulty
Parameter

\

_ exp (af(t?i - bj))
1+ exp (aj(B; - bj))

RN

Discrimination Latent

]

Parameter

Variable/

Three-parameter
Model

4.8 Three-parameter Model

Probability of a Correct Response\

1.0

0.5

0.0

\

(

Pseudo-guessing
Parameter

Difficulty \
Parameter
\
exp (QJ(Q: - b;])

Pl fi] ) e
e j)1+exp (a;-(ﬂi—bj))

Latent
Parameter Variable

Discrimination

A\ /

One-parameter
/ Rasch Model

Two-parameter
Model

Three-parameter : ':7'“ k- )
Model v
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4.9 Prior Distributions (11)

| Prior Distributions

Parameter Meaning LELTC] Distribution
a Discrimination positive values Lognormal
b Difficulty any value Normal
C Guessing between 0 and 1 Beta
(] Ability / Trait any value Normal

Prior distributions are selected to match the possible
value range of the parameters

Difficulty Discrimination Guessing

Prior Difficulty (Slide Layer)

- Prior for Difficulty Parameter

By~ mormel(D, 4)
Stone & Zhu (2016)

K 6 -4 -2 0 2 4 6 8

Parameter Values

Prior for Prior for Prior for
Difficulty Parameter Discrimination Parameter Guessing Parameter
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Prior Discrimination (Slide Layer)

Prior for Discrimination Parameter

07

06
E‘ 05 ag~ leguerwai(0, 1)
&
§ o Stone & Zhu (2016)
=]

03

02

01

0
0 1 2 3 4 5 [

Parameter Values

Prior for Prior for Prior for
Difficulty Parameter Discrimination Parameter Guessing Parameter

Prior Guessing (Slide Layer)

Prior for Guessing Parameter

iy~ bieta(5, 20)
Stane & Zhu (2016)

Parameter Valuas

Prior for Prior for Prior for
Difficulty Parameter Discrimination Parameter Guessing Parameter
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4.10 Example: Instrumentation

Example: Instrumentation

(Instrument

+ 10-item USDA Adult Food Security Scale Module (AFSSM)
+ Frequency and severity of experiencing food insecurity
- Affirmative responses = 1, non-affirmative responses = 0

\

/

( Respondents A
+ Data collected at a public university in the South (n = 462)
\_ J
s N
Statistical Model
+ Unidimensional 1PL model
« Higher scale scores indicate more severe food insecurity
\. J

4.11 Example: Sample Items

Sample Item:

Example: Item Types & Properties

because there wasn't enough money for food?

[1 Yes(1)
[1 No(0)
[1 Don't Know (0)

In the last 12 months, did you ever eat less than you felt you should

Full Survey: https://www.ers.usda.gov/media/8282/short2012.pdf

Sample Statistics:  Access via buttons below

Item Item

Difficulties Discriminations Distribution

52/85
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Difficulty (Slide Layer)

Example: Classical p-values

029 029

0.19 u 18
: 017 0.15
008
0

il i2 i3 4 i5 i6 i7 i8 i9 il0D
Item ID

m Item Total Score
Difficultios iscriminati Distribution

Discriminations

=
o
:
[-]
Q
&
F
-
L]
S
i

Discrimination (Slide Layer)

Example: Point-biserial Correlations

0.9
08 079 o078
‘ 0.70 072 o071
c 07 086 0.66
k= 0.60
506 0.54
[
5 05 0.46
o
T 04
e
03
Q
=02
0.1
0
i1 iz i3 i4 i i i7 8 9 il0
Item ID

Item Total Score

Difficulties Discriminations, Distribution
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Total score distribution (Slide Layer)

Example: Total Score Distribution

a0 4

30

10
, H_’_‘ ‘ V—‘_'—‘ —r—r—
2 1 ] g 10

0

Percent

totalsc

Item Item

Difficulties Discriminations

4.12 Model Estimation: Structure & Assumptions

Model Estimation: Likelihoods

Likelihood = [II1; px"f(l _ PU_)l-XU
*
Log-Likelihood = X, X;(xi; * log(P;y) + (1 = x;y) + log(1 = Pyy))

L _* -

. * P;j = probability of correct response for the i learner and " item
. * x;j = ohserved response (0 or 1} for the /" learner and /" item

Example: Response string [10 1]

Py * (1 — Pp) * Py ]
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4.13 Model Estimation: Structure & Assumptions

Model Estimation: Assumptions

f )

* Monotonicity (non-decreasing response function)

Respondents that are more insecure about food have a higher

probability of endorsing an item than respondents who are more secure
\, Vs
4 )

* Unidimensionality (one dimension is appropriate for data)

Only the food insecurity trait is driving responses.

\_ _J

* Local independence (no residual dependencies given model)

A response to one item is independent of the response to another item,
after controlling for level of food insecurity

\_ Y,

4.14 Model Estimation: Posterior Distributions

Model Estimation: Prior Distributions

bj~normal(0,4)

0.5 Stone & Zhu (2016)

Density

-8 6 4 2 0 2 4 6

@

Parameter Values

One prior for each difficulty parameter (one per item)
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4.15 Model Estimation: Posterior Distributions

Model Estimation: Prior Distributions

B~ normal(0, 1)
0.4

Stone & Zhu (2016)

0.35

03
0.25

Density

0.15
01
0.05

E 6 -4 2 0 2 4 6 8
Parameter Values

One prior for each person parameter (8))

4.16 Model Estimation: Posterior Distributions

Model Estimation: Posterior Distributions

Posterior Mean (EAP), Point Estimates

4 3.74
A
35

2.5
1.82 1.98

2 156 A
g A
e 091 094 13 og¢ 108
A A
1 053 4 055 4 A
0.5 A A

Parameter Value

a bl b2 b3 b4 bS5 b6 b7 b8 b9 bl0

Parameter ID

Compare to
p-values
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M dideldEd tistatiatioPoOasisic dliptvidutions

p-values (Slide Layer)

Parameter Value

E 0.4 Posterior Mean (EAP), Point Estimates
g, 0.29
%5 0.3
33 0.19 0.17
Ez 0.2 3 0.14 0. 015 1.82 "98
5 13l I o). 08 -
%1 01 Iof o.sI I :GI 005004
&,
41 532 b2j3 b3j4 baj5 bs jGb6 [7b7 (S (D9 j1@O
Paigen¢bID

PPMC: Computational Steps

Back to
Main Slide

4.17 PPMC: Computational Steps (1)

In simple terms, after estimating the posterior distributions:

(

- compute the discrepancy measure for the single observed data set
- compute the discrepancy measure for each predicted data set
- compare the observed value and the distribution of predicted values

\—make a decision about model-data fit based on the selected measure)

Click on the button to see a finer breakdown
as used in the regression example or advance to illustration.

Finer
Breakdown
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Finer Breakdown (Slide Layer)

PPMC: Computational Steps

1. Sample randomly a single valua for sach modal paramater from the associated posterior
distribution

2. 5Simulate one posterior predictive data set using the random parameter draw{s] and the
statistical model structure

3. Computs tha diserepancy massurs for the predicted and the observed data sets

4. Compare the two valuss of the discrapancy messura and record whether the predicted

value is larger

5. Rapest steps 1-8 a large number of times {e.g., 1,000 times or 10,000 times})

6. Tabulata how often the value of the predicted discrepancy measure was larger than the

corresponding value for the observed data {posterior predictive p-value}

7. Interpret the resulting percentage to make a judgment about medel fit to suggest model

modification or replacement Return to
Main Slide

4.18 General Principles (ll)

Computa

(@ )
Step 1: Ability Parameters

An ability parameter is randomly sampled from each learner's posterior distribution for .

s 1

Step 2: ltem Parameters

A parameter value is randomly sampled from each item's posterior distribution for by

\, y,
(, . 3
Step 3: Response Generation
The combination of all sampled learner and item parameter values is plugged into the
joint likelihood to create one complete predicted data set )
\
4
Repeat Steps 1-3 until the desired number of predicted data sets are generated
\ J
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4.19 Computation (1)

Example: Learner 48, Item 2

exp(a * (045 — by))

Py (X = 1]05) =
48,2( | ﬂ) 1+EX]J ax

45— b2))

exp(3.9398+(0.5909 — 0.4780)) ~— —

T 1+ exp(3.9398+(0.5909 — 0.4780))

156
T 1+1.56

=0.61

b3 raun = 0.4780

oy =
e j 0_5909

i
Continue for other items (new a and b values)
and other learners (new 6 values)

4.20 Computation (1)

Example: Learner 48, Item 2

14

10

P4s,2 =.61

o ;
E :
= :
Xag2 =1 Xas2=0:
- H
- '
i H
s '
il :
o
r T T T T T 1
02 00 02 04 06 08 10 12

[ Repeat for all learners and items to create one complete predicted data set.

DMO06: PPMC
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4.21 Untitled Slide

Discrepancy Measures

- Descriptive summary statistics (mean / standard deviation of total score)

* Frequency distribution (total score)
- Iltem parameters (percent correct, item-total correlation)

» Dependency indices (Yen's Q3)

4.22 Discrepancy Measure Selection

Total Score:

Summary
Statistics

Local Total Score:

Dependence; Freguency

Yen's O3 Distribution

Discrepancy
Measures

i Item
et Y Discrimination:
% correct /

Item-total
endorsed

Correlations

PPD
Computation
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4.23 Bookmark: Descriptive Statistics

~
o S
f Total Scores: ‘\"' —

) ~  Descriptive > ,
Statistics

\l"‘ ~
(' -5

4.24 Video: Descriptive Statistics

This video contains audio narration for these slides plus a
code-based demonstration of how to perform these analyses in SAS.

Alternatively, advance to the next slide to listen to audio-narrated
slides without any instructions for SAS.
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4.25 Descriptive Statistics (l)

Example: Descriptive Statistics

Step 1: Compute Statistics for Observed Data

Compute the mean and standard deviation of the total score in the
observed data

Moss = 1.71 and 5D, = 2.64 ]

4.26 Descriptive Statistics (1)

Example: Descriptive Statistics

Step 2: Compute Statistics for Predicted Data

Compute the means and standard deviations of the total score in each
of the 1,000 predicted data sets

[ [Msrmh Msler“‘r MSEm‘IOGU:l and [SDSFm'Ir SDsFer“‘: SDSﬂ'm1OOO]
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4.27 Total Score Distribution (ll)

Example: Total Score Distribution

Step 2a: Compute Frequencies for Predicted Data

Compute and save the total score frequencies for each of the
1,000 simulated data sets

4.28 Descriptive Statistics (111)

Example: Descriptive Statistics

Step 3: Compare Statistics for Observed and Predicted Data

Compare the distribution of the 1,000 means and standard deviations
from the predicted data to the single observed mean and standard
deviation to obtain the Bayesian posterior predictive p-value (PPP)

[PPP = Praportion(T(xSim) > T(x)|x) ]

1

N
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4.29 Descriptive Statistics (IV)

Example: Descriptive Statistics

Step 4: Make an Inferential Decision

Generally, PPP values of <.05 or > .95 are taken as an indication that
misfit is likely present based on this discrepancy measure

Graphical procedures can help with this step!

S

¢ I|||

g
I © £k
b @&

4.30 Descriptive Statistics (V)

Example: Descriptive Statistics

Discrepancy Measure: Total Score Summary Statistics
Observed = 1.71 Observed = 2.64

20 PPP = 0.86 PPP = 0.72
15
&
2
E 10
a
5
0 1 L1 |
15875 16625 17375 18125 18875 249 255 261 267 273 .79 285
Predicted Mean Predicted SD
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4.31 Bookend: Descriptive Statistics

This is the end of the section on this
measure.

4.32 Bookmark: Total Score Distribution

I ‘ Total Score:
1 ~<  Frequency
’ - Distribution Jb(y\

DMO06: PPMC 65/ 85 Core Slides



4.33 Video: Total Score Distribution

This video contains audio narration for these slides plus a
code-based demonstration of how to perform these analyses in SAS.

Alternatively, advance to the next slide to listen to audio-narrated
slides without any instructions for SAS.

4.34 Total Score Distribution (I)

Example: Total Score Distribution

Step 1: Compute Frequencies for the Observed Data

Compute and save the cbserved total score frequencies
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4.35 Total Score Distribution (lll)

Example: Total Score Distribution

Step 2b: Compute Percentiles for Predicted Data

Compute and save the 5%, 50", and 95" percentiles associated with
each frequency distribution at each total score point
(collapsing across replicated data sets)

4.36 Total Score Distribution (IV)

Example: Total Score Distribution

Step 3: Compare Statistics for Observed and Predicted Data

Compare the 1,000 frequency distributions from the predicted data to
the single observed frequency distribution to obtain the
Bayesian posterior predictive p-value (PPP)

[ PPP = Proportion(T(x*™) > T(x)|x) ]

l

N
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4.37 Total Score Distribution (V)

Example: Total Score Distribution

Step 3 (continued): Compare Observed and Predicted Data

Observed score
frequencies
ﬂ\

o | COUNT |

5 | 50 | p%s |

5%, 50™, and 95 percentiles of
simulated frequencies

0 284 2595 27 288
1 64 56 68 8
2 k] 2 7 46
3 2 it 5 n
4 16 4 2 28
5 17 12 18 5
] 19 12 1] 2
7 % 1 16 2
8 10 8 13 2
] ] ] 10 15
10 7 5 9 1

4.38 Total Score Distribution (VI)

Example: Total Score Distribution

Step 4: Make an Inferential Decision

Generally, PPP values of <.05 or > .95 are taken as an indication that
misfit is likely present based on this discrepancy measure

Rather than examine an overall PPP value for the whole distribution,
use a graphical approach!

SN

¢ ||||

g
Il © 2
b @&
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4.39 Total Score Distribution (VII)
Example: Total Score Distribution

250

200

3
g \
&
E_ 150 '.‘
£ { -
| Misfit
100 II\
50 AN
\ gy’
— Ssss
o
(1] 1 2 3 4 5 6 7 8 9 10
Total Score
Observed Score — — — 5th Percentile
S0th Percentile 95th Percentile

4.40 Total Score Distribution (Vi)

Example: Total Score Distribution

50

\
\
/

o
5 [ 7 8 9 10
Total Score
Observed Score — — — Sth Percentile
50th Percentile — — — 95th Percentile

Observed score frequency falls outside of the 5" and 95™
percentiles of the predicted total score frequencies
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4.41 Bookend: Total Score Distribution

This is the end of the section on this
measure.

4.42 Bookmark: Item-total Correlations

|
_\r tem  f Ny g
. Discrimination: ) ( /

Item-total

k > Correlations |% _L -

L—
)

|
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4.43 Video: Item-total Correlations

This video contains audio narration for these slides plus a
code-based demonstration of how to perform these analyses in SAS.

Alternatively, advance to the next slide to listen to audio-narrated
slides without any instructions for SAS.

4.44 Item-total Correlations (I)

Example: Item-Total Correlation

Step 1: Compute Item-total Correlations for Observed Data

Compute the observed item-total correlations for each item

Fiem1; Fitemn2seeeilitemi

(10 items = 10 item-total correlations)
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4.45 Item-total Correlations (l)

Example: Item-Total Correlation

Step 2: Compute Item-total Correlations for Predicted Data

Compute the item-total correlations for each item for each of the
1,000 simulated data sets

Fitem1 sim1, Fitem2,sim1,+++s (itemjsim1000

(10 items x 1,000 simulated data sets = 10,000 item-total correlations)

4.46 Item-total Correlations (lll)

Example: Item-Total Correlation

Step 3: Compare Observed and Predicted Data

Plot the distributions of the 1,000 item-total correlations by item, identify the
observed item-total correlation for each item, and compute the posterior
predictive p-value (PPP) for each item

Discrepancy Measure: Rem Total Correlation
10

L5

PPP values =—wi . o M o» =

et Total Corrslation

13 3 4 3 & T 8B 3% om
e

—— hbarrved ler-Total Correlation
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4.47 Item-total Correlations (1V)

Example: Item-Total Correlation

Step 4: Make an Inferential Decision

Generally, PPP values of < .05 or > .95 are taken as an indication that misfit
is likely present based on this discrepancy measure

Discrepancy Measure: Item-Total Correlation

Item-Total Correlation
e
a

“° Observed statistic larger than
01 most predicted statistics

Item

——— Observed Item-Total Correlation

4.48 Item-total Correlations (V)

Example: Item-Total Correlation

Discrepancy Measure: Itern-Total Corvelation
10
/ Interpretation \

For items 4 and 5 (PPP <.01), the
model always predicts data with an
item-total correlation less than the

observed item-total correlation.

Item-Total Correlation
s
«

The model may not be adequately
describing the discriminating
capability of items 4 and 5 and a
2PL may be more appropriate for

i 2 3 4 5 & 1 4 9 @ \ these items.
Item

——— Observed [tem:Total Corvelation

o Observed statistic larger than
o1 most predicted statistics
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4.49 Bookend: Item-total Correlations

This is the end of the section on this
measure.

4.50 Bookmark: Percent Correct

Jj |
K ¢ e W

. Difficulty: J L 4

% Correct at

k. 1 Score Level - _( -
L
577
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4.51 Video: Percent Correct

This video contains audio narration for these slides plus a
code-based demonstration of how to perform these analyses in SAS.

Alternatively, advance to the next slide to listen to audio-narrated
slides without any instructions for SAS.

4.52 Percent Correct (1)

Example: Item Percent Correct

Step 1: Compute Percent Correct for Observed Data

Compute the proportion of correct responses for each item / item mean
for each item at each score level

4 A

For a score of 0:

Pitem1, Pitemz;sss;Pitemn;
(10 items = 10 proportions correct)

For a score of 10:

pi(em‘h pin&mZ;---.Pitemj

QO items = 10 proportions correcy
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4.53 Percent Correct (ll)

Example: Item Percent Correct

Step 2: Compute Percent Correct for Predicted Data

Compute the proportion correct for each item for each of the
1,000 predicted data sets at each score level

/ For a score of 0: \

P\tem‘\,simh Ptemz,simh---p P\temj,sim‘lOOO
(10 items x 1,000 simulated data sets = 10,000 propertions correct)

For a score of 10:

p\tem'\,slmh ptemz,slm‘i;“n p\temj,simml)u
(10 items x 1,000 simulated data sets = 10,000 proportions correct)

&

4.54 Percent Correct (lll)

Example: Item Percent Correct

Step 3: Compare Observed and Predicted Data

Plot the distributions of the 1,000 percent correct values by item, identify the 5th and
95th percentiles of the distributions, identify the observed percent correct values for
each item, and compute the Bayesian posterior predictive p-value (PPP) for each item

Discrepancy Measure: ltem Score Proportion Correct
Mem 2

e 1 Item 3 Item 4 Iem 5

e ®

=

Item 6 Item & Item 9 Ivem 10

Prapertian Comee

012345678910 B 12345678910 01234367 EVI0  0123I4F6T 8PN 0LZI4ZETENL
Total Test Score

Observed Score O Sth and ¥5th Percentile Prediction Band
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4.55 Percent Correct (IV)

Example: Item Percent Correct

Step 3: Compare Observed and Predic

Observed score
falls outside of the 10
prediction band

ncy Measure: Item Score Proportion Correct

0.8

E - & This is the
A graph for
:,;- 04 item 8 only

0.2

0.0

— ﬁﬂ
Observe. d Score

O Sthand 95th Percentile Prediction Band

4.56 Percent Correct (V)

Example: Item Percent Correct

Step 4: Make an Inferential Decision

For this item, the model is under-predicting the proportion correct
for individuals with a total score of 8

Discrepancy Measure: bem Scare Propertion Corect

Fropostion Correct
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4.57 Bookend: Percent Correct

This is the end of the section on this
measure.

4.58 Bookmark: Yen's Q3

_\(‘ | »

Local s y
' Dependency: ) u
“t Yen’sQ3 _ —

DMO06: PPMC

78/ 85 Core Slides



4.59 Video: Yen's Q3

This video contains audio narration for these slides plus a
code-based demonstration of how to perform these analyses in SAS.

Alternatively, advance to the next slide to listen to audio-narrated
slides without any instructions for SAS.

4.60 Yen's Q3 (1)

Example: Yen's Q,

» The IRT model assumption of local independence can be violated
through response dependency and multidimensionality.

* The result is inter-item correlations beyond what can be attributed to
the latent variable in the model

* Yen (1984) proposed the Q3 statistic for detecting local dependence
that represents the correlation of the residuals for two items

» Residuals are the difference between the observed score of each
learner and the predicted response
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4.61 Yen's Q3 (1)

Example: Yen's Q,

Yen's Q3 is the correlation between two item residuals:

=X — E(X;|®)

r; = Observed — Predicted

Q3;; = corr(m, 1)

4.62 Yen's Q3 (1ll)

Example: Yen's Q,

Step 1: Compute Yen's Q3 for Observed Data

There are as many Q3 statistics as there are item pairs:

[ #ltems x (#ltems —1) 10x (10—-1) e ]
2 B 2 B

€
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4.63 Yen's Q3 (IV)

Example: Yen's Q,

Step 2: Compute Yen's Q3 for Predicted Data

Compute Yen's Q3 statistic for each of the 1,000 simulated data sets for
each item pair

Oaltam'\z,slmh Q3tam13,s|m1;-"rogtemu-u],slm‘\n"vogltemu-u),slmiﬂuo
(45 itern pairs x 1,000 simulated data sets = 45,000 Q3 statistics)

4.64 Yen's Q3 (V)

Example: Yen's Q,

Step 3: Compare Observed and Predicted Data

I Identify the 5th and 95th percentiles of the distribution of Q3 values for
each item pair,

Il. Identify the observed Q3 value within this distribution, and

lll. Compute the Bayesian posterior predictive p-value (PPP) for each item pair

-
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4.65 Yen's Q3 (VI)

Example: Yen's Q,

Step 4: Make an Inferential Decision

Generally, PPP values of <.05 or > .95 are taken as an indication that misfit
is likely present based on this discrepancy measure.

This is best visualized via a “heat map” or table that summarizes the PPP
values for all item pairs. We could also organize the PPP values as pie
charts or other graphical display!

‘ gwﬁ llll
=09

e-*,

4.66 Yen's Q3 (Vi)

Example: Yen's Q,

Discrepancy Measure: Yen's Q3 PPP

Darker red cells = PPP near 1
Darker blue cells = PPP near 0

H
3 [

74

8

9 43

1 2z 3 + 5 L] 7 8 9
Item
0.2 0.4 0.6 0.8
PPP Value
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Example: Yen's Q,
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4.67 Yen's Q3 (VIII)

Discrepancy Measure: Yen's Q3 PPP

2 3 4 5 6 7 8 9
Item
0.2 0.4 0.6 08
PPP Value

Quite a few PPP
values are close to
0 or 1 indicating
misfit and thus
local dependence
in the data under
the current model.

\—

4.68 Bookend: Yen's Q3

This is the end of the section on this

measure.
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4.69 Summary ()

Through PPMC analyses, the 1PL IRT model was shown to be
a poor fit to the USDA AFSSM data.

¥ The predicted total score distribution did not adequately represent
the observed score distribution

» The item-total correlation revealed the model is not adequately
describing the discriminating capability of two items and a 2PL may
be more appropriate for these items.

¥ Yen's Qs revealed local dependence in the data under the 1PL and a
model to account for dependence may be appropriate.

4.70 Summary (ll)

As with the regression examples, the choice
of discrepancy statistic is important!

Yen's Qs is only indicative of local item
dependence - it cannot diagnose whether a 1PL
or 2PL of similar dimensionality is more
appropriate for the data.

\_ Y,
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4.71 SAS Resources

Additional Resources

General resources for using SAS PROC MCMC gsas

https://support.sas.com/documentation/cdl/en/statug/63962/HTML/
default/viewer.htm#mcmc_toc.htm

Specific resources for using SAS PROC MCMC to estimate IRT models

Ames & Samonte (2015) Stone & Zhu (2016)

4.72 Bookend: IRT

This is the end of this section.
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